
CHAPTER 1

C PROGRAM

A SYSTEM VIEW

I assume that all of you would have got the setup of running a C program ready. Some

clarifications on my previous instructions:

Turbo C is a 16 bit compiler made for MS −DOS. Some school student may say

that it’s easy to start with but I say it is difficult to program in Turbo C. Now, we are

living in the world of 64-bit compilers and so we should learn to program for that.

Why linux? Absolutely no need to use linux for learning C. But I would like to give

an overview of the whole computer system (in this chapter itself), and it would be

based on linux. As a computer science student if you don’t know how to use linux,

you are like a purse without money. So, start using at least now.

Why AWS? It is not needed if you are having some linux distribution on your ma-

chine. But otherwise it is a very good idea to use AWS. It gives a shell on a linux

system and you have full control of the OS. And it is free also (for normal usage).

Moreover, AWS is used by many companies, and this would be a simple exercise to

get used to it.

Now, if you are having a gcc or icc compiler on windows, its very much okay. But just

one clarification: We won’t be using the word “Turbo C” further in any of the discussions.

1.1 What a C program does?

First of all why are we using C language? We can start from there:

Programming in C.

By Contributors Copyright c� 2014 GATE CSE

3

4 C PROGRAM - A SYSTEM VIEW

Digital Circuits We all know that the most important thing inside our CPU is the proces-

sor. It is made up of digital components like flip-flops and those who have studied digital

circuits would understand that the digital circuits produce output from the input, when sup-

plied with power and a clock. The speed at which the output is produced is determined by

the clock speed of the CPU, because the clock determines the speed of transfer of bits be-

tween different units (and that’s why a 3 GHz processor is faster than a 1 GHz processor).

But this will be effective only if the processor has the input data available. (Most times

there is delay for the CPU to get the input data and that’s why the actual running time of a

process on a 1GHz processor is not 3 ×, compared to the same process running on a 3GHz

processor.)

Computer Organization The reason for the above problem is that data is given to proces-

sor from memory and the time to take a data from memory to processor is like 100 ×, the

speed at which the processor works. So, we use many techniques like buffering, caching

etc. to minimize this effect.

Okay, so now our aim is to give data to the CPU and it has these circuits called Func-

tional Units to perform the specified tasks. Each functional unit does some job like addi-

tion, multiplication etc. and they give the result when provided with the input(s). But these

input and output are in binary, as all these units are digital. That is, the input to CPU will

be a series of 0’s and 1’s and the output will also be a series of 0’s and 1’s. So, what hap-

pens to the CPU when we give some string of 0’s and 1’s? Not all such strings will produce

a valid output and this is entirely dependent on the processor. The processor manufacturer

clearly specifies what’s the meaning of each combination 0’s and 1’s and that’s called the

language of the processor which is entirely determined by its architecture.

Computer Architecture Most of our systems are x86 architecture and it has its own In-

struction set [1] . So, lets take an example string of 0’s and 1’s in it:

00000101 00000000 00000000 00000000 00000001

This set of strings will add 1 to the content of EAX register (a register is a very fast mem-

ory inside the processor for holding data, and EAX is one among them in x86 architecture)

which is a 32-bit register . The first byte is 00000101 which is given to the Instruction de-

code unit inside the processor which tells the CPU that it must add the next 32 bits to the

contents of EAX register. Now, the next 32-bits will be given to the ADD unit which will

add it to the contents of EAX register. In our example, the 32 bits represents just 1 and so

the addition results in an increment of 1.

[Small question: Instead of ADD, if we use INC instruction, it results in better perfor-

mance. How?]

So, this is how the CPU works- everything is in binary. We can get the meaning of each

binary string from the Instruction manual [1]

To make things slightly easier they encode the bit-strings as HEX codes. So, the above

bit string will become

05 00 00 00 01

Even then, it is difficult to write a program like this. Because human mind is not good at

remembering numbers. So, then came Assembly language. Here, we use mnemonics to

represent each operation. For example ADD is the mnemonic to do addition, SUB is the

mnemonic to do subtraction etc. So, instead of the above binary string, now we can write

ADD EAX, 01

WHAT A C PROGRAM DOES? 5

and the assembler will translate it into

05 00 00 00 01

Ahh! Much easier world for a programmer. But imagine writing an assembly program to

print the factorial of n. How much time is needed to write it using these kinds of mnemon-

ics, for each operation in the algorithm? Wouldn’t it be better if we say the algorithm and

then that is translated to binary string by < someone >? Yes, that’s where C language

comes. We can straight away represent most algorithms in C, and the C compiler will

translate it into the binary string in the same way an assembler would do for assembly

language.

So, lets write the C code for the above addition.

i n t a ;

a = a + 1 ;

This will do the same job as

ADD EAX, 01

assuming a is the value we had in EAX .

Now, to start executing a program we need an entry point to the code. This is often

named as main. The program starts executing from the first instruction inside main. So,

to make our C code complete, we do the following

i n c l u d e <s t d i o . h>

i n t main () {
i n t a ;

a = a + 1 ;

p r i n t f (‘ ‘ a = %d\n ” , a) ;

}

For now lets assume that the printf statement prints the value of a. But, C language

has a restriction that before any variable is used, its type must be specified. So, before

using printf , we must tell its type. Its type is written in a file called “stdio.h” so we can

include that file (which will make all the contents of that file as part of our file) or we can

just give the correct type of printf as

i n t p r i n t f (c o n s t c h a r ∗ , . . .) ;

Directly writing the declaration of printf is not recommended and I just gave it to show

the functionality of #include < stdio.h >. Many people still think that code of printing

is inside “stdio.h” and that’s completely wrong. Code of printf is part of C library which

is available as libc (there must be a file called libc.so in linux and printf code is inside

that). The usage of libc.so file is that the same code can be used by many programs (all

linking to the same library code) so that reduces the main memory required to run the

programs.

So, this usage of sharing libc saves the total memory required when these 4 programs

are concurrently executing. (If you want to see how many processes are executing at this

moment on your system, just type top in a shell).

By default gcc will link to any function inside libc, if we call them in our program. But

if we use any other library function, we have to explicitly tell gcc to link to that library. For

example, to use sin(x) in a code we have to link to math library (libm) as follows:

6 C PROGRAM - A SYSTEM VIEW

4 programs using the same code of printf inside libc.so, which is loaded in memory.

Figure 1.1 Programs sharing printf code

gcc prog . c −o prog −lm

(l i s w r i t t e n i n s t e a d of l i b , so l ibm becomes lm ,

l i b c becomes l c . . .)

Once we compile the code gcc will be producing the output in a file called prog which

is given with the −o option. If we don’t give any −o option, output by default goes to a

file called a.out. This will be in binary format and we cannot see it as text. This binary

contains the bitstrings to be given to the processor as we discussed in the beginning. But

some codes like that of printf is not inside this binary and is at a common location, which

is called by our binary. Can we make copy the printf code and other library functions to

be inside our binary? Yes, we can with the following command:

gcc prog . c −o progS −lm − s t a t i c

(progS i s j u s t a d i f f e r e n t name)

Now, just see the size difference of the two binaries using ls command

l s − l p rog

Now, to get the output by running the executable, we have to do

. / p rog

(. / j u s t t e l l s t h a t prog i s i n t h e c u r r e n t d i r e c t o r y)

Once the binary is produced by the compiler, before we get the output, there are many

stages:

Loading: Copying the content of the binary file to memory

Linking: Fixing the calls in the binary which are to shared libraries as in the case of

printf

Process starts: Now the OS makes a process for our program (it gets a pid) and it’ll

be in ready state.

When the turn comes, our process will get executed (it can be stopped in between to

give other processes their turn)

When our process is being executed, the binary strings inside it (which are instructions

to the processor) are send one by one to the processor, which executes them

Memory Management: For all the memory required by the process, the Memory Man-

agement Unit (MMU) ensures that the memory addresses used inside the object code

WHAT A C PROGRAM DOES? 7

(which are virtual addresses) are properly mapped to physical memory locations on

the RAM

So, even after the compilation (which of course includes its own phases) there are so

many phases before we get the output of a C program.

We’ll stop this chapter after mentioning about how we get segmentation fault in our

programs.

1.1.1 Segmentation Fault

When a process is made by the OS, it allots some memory to it. This can be increased

during its execution, upon request to the OS, and can go up to a limit set by the OS.

So, when this process goes to execution state, it can only access the memory allotted to

it. (This is done by giving a pagetable to each process and all memory accesses are

done through it). Whenever a process tries to access a memory which is not allotted to

it, segmentationfault occurs. Segmentation fault also occurs, if a process tries to write

something to a read only memory area. For example, a program memory consists of many

parts called segments and there are code segment, data segment and stack segment. Of

these, the data segment is again divided into Read Only (RO) data segment and Read

Write (RW) data segment. Among these segments only the RW data segment and stack

segment are allowed to be modified by a process. (Some systems allow code segment also

to be writable and can be used for writing self modifiable code) If a process tries to modify

any other segment, then also segmentation fault happens. (Segmentation fault also happens

due to some special hardware instructions, but we can ignore them as this won’t happen

for general programs compiled in a normal way.)

In this first chapter we have skimmed across compilers, memory management, process

management, computer organization and computer architecture, which covers the basics of

a Computer System. So, in order to run a very simple program itself we require all these.

If you understand the basic functioning of these topics, that will be enough for an exam

like GATE. From next chapter onwards, we’ll go inside C.

