LAGRANGE’S THEOREM

Definition:

An operation on a set GG is a function x : G x G — G.

Definition:

A group is a set G which is equipped with an operation * and a special element e € G, called
the identity, such that

(i) the associative law holds: for every z,y,z € G we have x % (y x z) = (z x y) * z;

(ii) exz =z =xxeforall x € G;

(iii) for every x € G, there is 2’ € G (so-called, inverse) with z x 2’ = e = 2’ * .

Definition:

A subset H of a group G is a subgroup if
(i) e € H;
(ii) if x,y € H, then x xy € H;
(iii) if x € H, then 27! € H.

Definition:

If G is a group and a € G, write
(a) = {a" :n € Z} = {all powers of a};

(a) is called the cyclic subgroup of G generated by a.

Definition:

A group G is called cyclic if G = (a) for some a € G. In this case a is called a generator of G.

Definition:

Let G be a group and let a € G. If a* = 1 for some k£ > 1, then the smallest such exponent
k > 1 is called the order of a; if no such power exists, then one says that a has infinite order.

Definition:

If G is a finite group, then the number of elements in G, denoted by |G|, is called the order of
G.

Theorem:

Let G be a finite group and let a € G. Then

order of a = |(a)|.

Fermat’s Little Theorem:

Let p be a prime. Then n? =n mod p for any integer n > 1.



Proof (Sketch): We distinguish two cases.
Case A: Let p | n, then, obviously, p | n? — n, and we are done.

Case B: Let
p fn.

Consider the group Z; and pick any [a] € Z, . Let k be the order of [a]. We know that ([a]) is
a subgroup of Z; and by the Theorem above we obtain

[([a])] = k.

Lemma (Lagrange's Theorem):

If H is a subgroup of a finite group G, then

|H| divides |G|.

By Lagrange’s Theorem we get
|([a])| divides |Z;|,

which gives
k ’ p—= 17

since |([a])] =k and |Z;| =p — 1. So
p—1=kd

for some integer d. On the other hand, since k is the order of [a], it follows that for any n € [a]
we have
n*=1 mod p,

hence
nfM=1=1 mod p,

and the result follows, since kd=p—1. R

Definition:

If H is a subgroup of a group G and a € G, then the coset aH is the following subset of G :

aH = {ah : h € H}.

Remark:

Cosets are usually not subgroups. In fact, if a ¢ H, then 1 € aH, for otherwise
l=ah — a=h'¢H,

which is a contradiction.



Example:

Let G =S5 and H = {(1), (12)}. Then there are 3 cosets:
(12)H = {(1), (12)} = H,
(13)H = {(13), (123)} = (123)H,

(23)H = {(23), (132)} = (132)H.

Lemma:

Let H be a subgroup of a group G, and let a,b € G. Then
(i) aH =bH <= b 'a€ H.
(i) If aH NbH # &, then aH = bH.
(ili) [aH| = |H| for all a € G.

Proof:

(i) =) Let aH = bH, then for any hy € H there is hy € H with ahy = bhy. This gives
b la=hh'! = blacH,
since hy € H and h{' € H.
<) Let b='a € H. Put b'a = hy. Then

aH C bH, since if x € aH, then x =ah = 2 =b(b"'a)h =b hoh = bh, € bH;
h1

bH C aH, since if v € bH, then v =bh = =z =a(b 'a)*h=ahy'h=ahy € aH.
~—~
ho

So, aH C bH and bH C aH, which gives aH = bH.

(ii) Let aH NbH # @, then there exists an element x with
reaHNbH — ahi=x=0bhy — b’la:thfl € H,

therefore aH = bH by (i).

(iii) Note that if h; and hsy are two distinct elements from H, then ah, and ahy are also distinct,
since otherwise
ahi = ahs —— ailahl = cflahg - hi = hg,

which is a contradiction. So, if we multiply all elements of H by a, we obtain the same number
of elements, which means that |[aH| = |H|. B



Lagrange’s Theorem:

If H is a subgroup of a finite group G, then
|H| divides |G].
Proof:

Let |G| =t and
{alH, CLQH,. .. ,atH}

be the family of all cosets of H in G. Then
G:alHUagHU...UatH,

because G = {ay,as,...,a;} and 1 € H. By (ii) of the Lemma above for any two cosets a; H
and a; H we have only two possibilities:

a;HNa;H=2 or aH=a;H.

Moreover, from (iii) of the Lemma above it follows that all cosets have exactly |H| number of
elements. Therefore

G| =|H|+ |H|+...+|H = |G|=dH]|,
and the result follows. W

Corollary 1:
If G is a finite group and a € G, then the order of a is a divisor of |G].

Proof:

By the Theorem above, the order of the element a is equal to the order of the subgroup H = (a).
By Lagrange’s Theorem, |H| divides |G|, therefore the order a divides |G|. B

Corollary 2:
If a finite group G has order m, then a™ =1 for all a € G.

Proof:

Let d be the order of a. By Corollary 1, d | m; that is, m = dk for some integer k. Thus,

a" =a% = (=11

Corollary 3:

If p is a prime, then every group G of order p is cyclic.

Proof:

Choose a € G with a # 1, and let H = (a) be the cyclic subgroup generated by a. By Lagrange’s
Theorem, |H| is a divisor of |G| = p. Since p is a prime and |H| > 1, it follows that

|H| =p =G,
and so H = (G, as desired. B
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let a,b € G. Then
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Proof:

(i) =) Let aH = bH, then for any hy €
H there is ho € H with ahy = bho. This
gives
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<) Let b=la € H. Put b=la = h,.
Then

aH C bH, since if x € aH, then

r = ah

U
_ —1 _ _
x=bb "a)h =0> }?h—bhlébH
1

and
bH C aH, since if x € bH, then
x = bh

U

r=a(b la) " th = ahalh = aho € aH.
h
2

So, aH C bH and bH C aH, which
gives aH = bH.



(ii) Let aH NbH # @, then there exists
an element = with

r € aH "bH
J
ahi1 = x = bhy
J

b~la = hoh' € H,
therefore aH = bH by (i).



(iii) Note that if h; and ho are two dis-
tinct elements from H, then ahy and
aho are also distinct, since otherwise

ahi1 = aho

U

aho

h1 = hao,

which is a contradiction. So, if we multi-
ply all elements of H by a, we obtain the
same number of elements, which means
that |aH| = |H|. B



Lagrange’s Theorem:

If H is a subgroup of a finite group G,
then
|H | divides |G]|.



Proof:
Let |G| =t and
{a1H, a2H,...,atH}

be the family of all cosets of H in G.
Then

G=a1HUayHU...UatH,

because G = {ai,a2,...,a¢+} and 1 €
H. By (ii) of the Lemma above for any
two cosets a;H and a;H we have only
two possibilities:
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Moreover, from (iii) of the Lemma above
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Corollary 1:

If G is a finite group and a € G, then
the order of a is a divisor of |G|.

Proof:

By the Theorem above, the order of the
element a is equal to the order of the
subgroup

H = (a).
By Lagrange’s Theorem, |H | divides |G|,
therefore the order a divides |G|. B



Corollary 2:

If a finite group G has order m, then

a =1

for all a € G.

Proof:

Let d be the order of a. By Corollary 1,
d | m; that is,

m = dk
for some integer k. Thus,

am =a%*=(@H*=1.m



Corollary 3:

If p is a prime, then every group G of
order p is cyclic.

Proof:

Choose a € G with a # 1, and let
H = (a)

be the cyclic subgroup generated by a.
By Lagrange’s Theorem, |H| is a divisor
of |G| = p. Since p is a prime and |H| >
1, it follows that

|H| =p = |G|,

and so H = G, as desired. B




