
LAGRANGE’S THEOREM

Definition:

An operation on a set G is a function ∗ : G×G → G.

Definition:

A group is a set G which is equipped with an operation ∗ and a special element e ∈ G, called
the identity, such that

(i) the associative law holds: for every x, y, z ∈ G we have x ∗ (y ∗ z) = (x ∗ y) ∗ z;
(ii) e ∗ x = x = x ∗ e for all x ∈ G;
(iii) for every x ∈ G, there is x′ ∈ G (so-called, inverse) with x ∗ x′ = e = x′ ∗ x.

Definition:

A subset H of a group G is a subgroup if
(i) e ∈ H;
(ii) if x, y ∈ H, then x ∗ y ∈ H;
(iii) if x ∈ H, then x−1 ∈ H.

Definition:

If G is a group and a ∈ G, write

〈a〉 = {an : n ∈ Z} = {all powers of a};

〈a〉 is called the cyclic subgroup of G generated by a.

Definition:

A group G is called cyclic if G = 〈a〉 for some a ∈ G. In this case a is called a generator of G.

Definition:

Let G be a group and let a ∈ G. If ak = 1 for some k ≥ 1, then the smallest such exponent
k ≥ 1 is called the order of a; if no such power exists, then one says that a has infinite order.

Definition:

If G is a finite group, then the number of elements in G, denoted by |G|, is called the order of
G.

Theorem:

Let G be a finite group and let a ∈ G. Then

order of a = |〈a〉|.

Fermat’s Little Theorem:

Let p be a prime. Then np ≡ n mod p for any integer n ≥ 1.
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Proof (Sketch): We distinguish two cases.

Case A: Let p | n, then, obviously, p | np − n, and we are done.

Case B: Let
p 6 | n.

Consider the group Z×
p and pick any [a] ∈ Z×

p . Let k be the order of [a]. We know that 〈[a]〉 is
a subgroup of Z×

p and by the Theorem above we obtain

|〈[a]〉| = k.

Lemma (Lagrange’s Theorem):

If H is a subgroup of a finite group G, then

|H| divides |G|.

By Lagrange’s Theorem we get
|〈[a]〉| divides |Z×

p |,

which gives
k | p− 1,

since |〈[a]〉| = k and |Z×
p | = p− 1. So

p− 1 = kd

for some integer d. On the other hand, since k is the order of [a], it follows that for any n ∈ [a]
we have

nk ≡ 1 mod p,

hence
nkd ≡ 1d ≡ 1 mod p,

and the result follows, since kd = p− 1. �

Definition:

If H is a subgroup of a group G and a ∈ G, then the coset aH is the following subset of G :

aH = {ah : h ∈ H}.

Remark:

Cosets are usually not subgroups. In fact, if a 6∈ H, then 1 6∈ aH, for otherwise

1 = ah =⇒ a = h−1 6∈ H,

which is a contradiction.
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Example:

Let G = S3 and H = {(1), (12)}. Then there are 3 cosets:

(12)H = {(1), (12)} = H,

(13)H = {(13), (123)} = (123)H,

(23)H = {(23), (132)} = (132)H.

Lemma:

Let H be a subgroup of a group G, and let a, b ∈ G. Then

(i) aH = bH ⇐⇒ b−1a ∈ H.

(ii) If aH ∩ bH 6= ∅, then aH = bH.

(iii) |aH| = |H| for all a ∈ G.

Proof:

(i) ⇒) Let aH = bH, then for any h1 ∈ H there is h2 ∈ H with ah1 = bh2. This gives

b−1a = h2h
−1
1 =⇒ b−1a ∈ H,

since h2 ∈ H and h−1
1 ∈ H.

⇐) Let b−1a ∈ H. Put b−1a = h0. Then

aH ⊂ bH, since if x ∈ aH, then x = ah =⇒ x = b(b−1a)h = b h0h︸︷︷︸
h1

= bh1 ∈ bH;

bH ⊂ aH, since if x ∈ bH, then x = bh =⇒ x = a(b−1a)−1h = a h−1
0 h︸ ︷︷ ︸
h2

= ah2 ∈ aH.

So, aH ⊂ bH and bH ⊂ aH, which gives aH = bH.

(ii) Let aH ∩ bH 6= ∅, then there exists an element x with

x ∈ aH ∩ bH =⇒ ah1 = x = bh2 =⇒ b−1a = h2h
−1
1 ∈ H,

therefore aH = bH by (i).

(iii) Note that if h1 and h2 are two distinct elements from H, then ah1 and ah2 are also distinct,
since otherwise

ah1 = ah2 =⇒ a−1ah1 = a−1ah2 =⇒ h1 = h2,

which is a contradiction. So, if we multiply all elements of H by a, we obtain the same number
of elements, which means that |aH| = |H|. �
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Lagrange’s Theorem:

If H is a subgroup of a finite group G, then

|H| divides |G|.

Proof:

Let |G| = t and
{a1H, a2H, . . . , atH}

be the family of all cosets of H in G. Then

G = a1H ∪ a2H ∪ . . . ∪ atH,

because G = {a1, a2, . . . , at} and 1 ∈ H. By (ii) of the Lemma above for any two cosets aiH
and ajH we have only two possibilities:

aiH ∩ ajH = ∅ or aiH = ajH.

Moreover, from (iii) of the Lemma above it follows that all cosets have exactly |H| number of
elements. Therefore

|G| = |H|+ |H|+ . . . + |H| =⇒ |G| = d|H|,

and the result follows. �

Corollary 1:

If G is a finite group and a ∈ G, then the order of a is a divisor of |G|.

Proof:

By the Theorem above, the order of the element a is equal to the order of the subgroup H = 〈a〉.
By Lagrange’s Theorem, |H| divides |G|, therefore the order a divides |G|. �

Corollary 2:

If a finite group G has order m, then am = 1 for all a ∈ G.

Proof:

Let d be the order of a. By Corollary 1, d | m; that is, m = dk for some integer k. Thus,

am = adk = (ad)k = 1. �

Corollary 3:

If p is a prime, then every group G of order p is cyclic.

Proof:

Choose a ∈ G with a 6= 1, and let H = 〈a〉 be the cyclic subgroup generated by a. By Lagrange’s
Theorem, |H| is a divisor of |G| = p. Since p is a prime and |H| > 1, it follows that

|H| = p = |G|,

and so H = G, as desired. �

4



Definition:

An operation on a set G is a function
∗ : G × G → G.

Definition:

A group is a set G which is equipped
with an operation ∗ and a special ele-
ment e ∈ G, called the identity, such
that
(i) the associative law holds: for every

x, y, z ∈ G we have x∗(y∗z) = (x∗y)∗z;
(ii) e ∗ x = x = x ∗ e for all x ∈ G;
(iii) for every x ∈ G, there is x′ ∈ G

(so-called, inverse) with x ∗ x′ = e =
x′ ∗ x.



Definition:

A subset H of a group G is a subgroup
if
(i) e ∈ H;
(ii) if x, y ∈ H, then x ∗ y ∈ H;
(iii) if x ∈ H, then x−1 ∈ H.



Definition:

If G is a group and a ∈ G, write

〈a〉 = {an : n ∈ Z} = {all powers of a};

〈a〉 is called the cyclic subgroup of G
generated by a.

Definition:

A group G is called cyclic if G = 〈a〉 for
some a ∈ G. In this case a is called a
generator of G.



Definition:

Let G be a group and let a ∈ G. If ak =
1 for some k ≥ 1, then the smallest such
exponent k ≥ 1 is called the order of a;
if no such power exists, then one says
that a has infinite order.

Definition:

If G is a finite group, then the number of
elements in G, denoted by |G|, is called
the order of G.



Theorem:

Let G be a finite group and let a ∈ G.
Then

order of a = |〈a〉|.

Fermat’s Little Theorem:

Let p be a prime. Then np ≡ n mod p
for any integer n ≥ 1.



Proof (Sketch): We distinguish two cases.

Case A: Let p | n, then, obviously, p | np−
n, and we are done.



Case B: Let
p 6 | n.

Consider the group Z×
p and pick any

[a] ∈ Z×
p . Let k be the order of [a]. We

know that 〈[a]〉 is a subgroup of Z×
p and

by the Theorem above we obtain

|〈[a]〉| = k.

Lemma (Lagrange’s Theorem):

If H is a subgroup of a finite group G, then

|H| divides |G|.



By Lagrange’s Theorem we get

|〈[a]〉| divides |Z×
p |,

which gives

k | p − 1,

since |〈[a]〉| = k and |Z×
p | = p − 1. So

p − 1 = kd

for some integer d. On the other hand,
since k is the order of [a], it follows that
for any n ∈ [a] we have

nk ≡ 1 mod p,

hence

nkd ≡ 1d ≡ 1 mod p,

and the result follows, since kd = p −
1. �



Definition:

If H is a subgroup of a group G and a ∈
G, then the coset aH is the following
subset of G :

aH = {ah : h ∈ H}.

Remark:

Cosets are usually not subgroups. In
fact, if a 6∈ H, then 1 6∈ aH, for other-
wise

1 = ah =⇒ a = h−1 6∈ H,

which is a contradiction.



Example:

Let G = S3 and H = {(1), (12)}. Then
there are 3 cosets:

(12)H = {(1), (12)} = H,

(13)H = {(13), (123)} = (123)H,

(23)H = {(23), (132)} = (132)H.



Lemma:

Let H be a subgroup of a group G, and
let a, b ∈ G. Then

(i) aH = bH ⇐⇒ b−1a ∈ H.

(ii) If aH ∩ bH 6= ∅, then aH = bH.

(iii) |aH| = |H| for all a ∈ G.



Proof:

(i) ⇒) Let aH = bH, then for any h1 ∈
H there is h2 ∈ H with ah1 = bh2. This
gives

b−1a = h2h
−1
1 =⇒ b−1a ∈ H,

since h2 ∈ H and h−1
1 ∈ H.



⇐) Let b−1a ∈ H. Put b−1a = h0.
Then

aH ⊂ bH, since if x ∈ aH, then

x = ah

⇓
x = b(b−1a)h = b h0h︸︷︷︸

h1

= bh1 ∈ bH

and

bH ⊂ aH, since if x ∈ bH, then

x = bh

⇓
x = a(b−1a)−1h = a h−1

0 h︸ ︷︷ ︸
h2

= ah2 ∈ aH.

So, aH ⊂ bH and bH ⊂ aH, which
gives aH = bH.



(ii) Let aH ∩ bH 6= ∅, then there exists
an element x with

x ∈ aH ∩ bH

⇓
ah1 = x = bh2

⇓
b−1a = h2h

−1
1 ∈ H,

therefore aH = bH by (i).



(iii) Note that if h1 and h2 are two dis-
tinct elements from H, then ah1 and
ah2 are also distinct, since otherwise

ah1 = ah2

⇓
a−1ah1 = a−1ah2

⇓
h1 = h2,

which is a contradiction. So, if we multi-
ply all elements of H by a, we obtain the
same number of elements, which means
that |aH| = |H|. �



Lagrange’s Theorem:

If H is a subgroup of a finite group G,
then

|H| divides |G|.



Proof:

Let |G| = t and

{a1H, a2H, . . . , atH}
be the family of all cosets of H in G.
Then

G = a1H ∪ a2H ∪ . . . ∪ atH,

because G = {a1, a2, . . . , at} and 1 ∈
H. By (ii) of the Lemma above for any
two cosets aiH and ajH we have only
two possibilities:

aiH ∩ ajH = ∅ or aiH = ajH.

Moreover, from (iii) of the Lemma above
it follows that all cosets have exactly |H|
number of elements. Therefore

|G| = |H| + . . . + |H| =⇒ |G| = d|H|,
and the result follows. �



Corollary 1:

If G is a finite group and a ∈ G, then
the order of a is a divisor of |G|.

Proof:

By the Theorem above, the order of the
element a is equal to the order of the
subgroup

H = 〈a〉.
By Lagrange’s Theorem, |H| divides |G|,
therefore the order a divides |G|. �



Corollary 2:

If a finite group G has order m, then

am = 1

for all a ∈ G.

Proof:

Let d be the order of a. By Corollary 1,
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Corollary 3:

If p is a prime, then every group G of
order p is cyclic.

Proof:

Choose a ∈ G with a 6= 1, and let

H = 〈a〉
be the cyclic subgroup generated by a.
By Lagrange’s Theorem, |H| is a divisor
of |G| = p. Since p is a prime and |H| >
1, it follows that

|H| = p = |G|,
and so H = G, as desired. �


