LAGRANGE'S THEOREM

Definition:

An operation on a set G is a function $*: G \times G \to G$.

<u>Definition</u>:

A group is a set G which is equipped with an operation * and a special element $e \in G$, called the identity, such that

- (i) the associative law holds: for every $x, y, z \in G$ we have x * (y * z) = (x * y) * z;
- (ii) e * x = x = x * e for all $x \in G$;
- (iii) for every $x \in G$, there is $x' \in G$ (so-called, <u>inverse</u>) with x * x' = e = x' * x.

<u>Definition</u>:

A subset H of a group G is a subgroup if

- (i) $e \in H$;
- (ii) if $x, y \in H$, then $x * y \in H$;
- (iii) if $x \in H$, then $x^{-1} \in H$.

Definition:

If G is a group and $a \in G$, write

 $\langle a \rangle = \{a^n : n \in \mathbb{Z}\} = \{\text{all powers of } a\};\$

 $\langle a \rangle$ is called the cyclic subgroup of G generated by a.

Definition:

A group G is called cyclic if $G = \langle a \rangle$ for some $a \in G$. In this case a is called a generator of G.

Definition:

Let G be a group and let $a \in G$. If $a^k = 1$ for some $k \ge 1$, then the smallest such exponent $k \ge 1$ is called the <u>order</u> of a; if no such power exists, then one says that a has <u>infinite order</u>.

Definition:

If G is a finite group, then the number of elements in G, denoted by |G|, is called the <u>order</u> of G.

Theorem:

Let G be a finite group and let $a \in G$. Then

order of $a = |\langle a \rangle|$.

Fermat's Little Theorem:

Let p be a prime. Then $n^p \equiv n \mod p$ for any integer $n \geq 1$.

<u>Proof</u> (Sketch): We distinguish two cases.

Case A: Let $p \mid n$, then, obviously, $p \mid n^p - n$, and we are done.

Case B: Let

 $p \not\mid n.$

Consider the group \mathbb{Z}_p^{\times} and pick any $[a] \in \mathbb{Z}_p^{\times}$. Let k be the order of [a]. We know that $\langle [a] \rangle$ is a subgroup of \mathbb{Z}_p^{\times} and by the Theorem above we obtain

$$|\langle [a] \rangle| = k.$$

<u>Lemma</u> (Lagrange's Theorem):

If H is a subgroup of a finite group G, then

|H| divides |G|.

By Lagrange's Theorem we get

 $|\langle [a] \rangle|$ divides $|\mathbb{Z}_p^{\times}|,$

which gives

 $k \mid p-1,$

since $|\langle [a] \rangle| = k$ and $|\mathbb{Z}_p^{\times}| = p - 1$. So

for some integer d. On the other hand, since k is the order of [a], it follows that for any $n \in [a]$ we have

p-1 = kd

$$n^k \equiv 1 \mod p$$
,

hence

 $n^{kd} \equiv 1^d \equiv 1 \mod p,$

and the result follows, since kd = p - 1.

Definition:

If H is a subgroup of a group G and $a \in G$, then the <u>coset</u> aH is the following subset of G:

$$aH = \{ah : h \in H\}.$$

Remark:

Cosets are usually not subgroups. In fact, if $a \notin H$, then $1 \notin aH$, for otherwise

$$1 = ah \implies a = h^{-1} \notin H,$$

which is a contradiction.

Example:

Let $G = S_3$ and $H = \{(1), (12)\}$. Then there are 3 cosets:

$$(12)H = \{(1), (12)\} = H,$$

$$(13)H = \{(13), (123)\} = (123)H,$$

$$(23)H = \{(23), (132)\} = (132)H.$$

Lemma:

Let H be a subgroup of a group G, and let $a, b \in G$. Then

(i) $aH = bH \iff b^{-1}a \in H$. (ii) If $aH \cap bH \neq \emptyset$, then aH = bH. (iii) |aH| = |H| for all $a \in G$.

Proof:

(i) \Rightarrow) Let aH = bH, then for any $h_1 \in H$ there is $h_2 \in H$ with $ah_1 = bh_2$. This gives

$$b^{-1}a = h_2 h_1^{-1} \quad \Longrightarrow \quad b^{-1}a \in H,$$

since $h_2 \in H$ and $h_1^{-1} \in H$.

$$\Leftarrow) \text{ Let } b^{-1}a \in H. \text{ Put } b^{-1}a = h_0. \text{ Then}$$
$$aH \subset bH, \text{ since if } x \in aH, \text{ then } x = ah \implies x = b(b^{-1}a)h = b\underbrace{h_0h}_{h_1} = bh_1 \in bH;$$

 $bH \subset aH$, since if $x \in bH$, then x = bh \implies $x = a(b^{-1}a)^{-1}h = a\underbrace{h_0^{-1}h}_{h_2} = ah_2 \in aH$.

So, $aH \subset bH$ and $bH \subset aH$, which gives aH = bH.

(ii) Let $aH \cap bH \neq \emptyset$, then there exists an element x with

$$x \in aH \cap bH \implies ah_1 = x = bh_2 \implies b^{-1}a = h_2h_1^{-1} \in H,$$

therefore aH = bH by (i).

(iii) Note that if h_1 and h_2 are two distinct elements from H, then ah_1 and ah_2 are also distinct, since otherwise

$$ah_1 = ah_2 \implies a^{-1}ah_1 = a^{-1}ah_2 \implies h_1 = h_2,$$

which is a contradiction. So, if we multiply all elements of H by a, we obtain the same number of elements, which means that |aH| = |H|.

Lagrange's Theorem:

If H is a subgroup of a finite group G, then

|H| divides |G|.

Proof:

Let |G| = t and

$$\{a_1H, a_2H, \ldots, a_tH\}$$

be the family of all cosets of H in G. Then

$$G = a_1 H \cup a_2 H \cup \ldots \cup a_t H,$$

because $G = \{a_1, a_2, \ldots, a_t\}$ and $1 \in H$. By (ii) of the Lemma above for any two cosets $a_i H$ and $a_i H$ we have only two possibilities:

$$a_i H \cap a_j H = \emptyset$$
 or $a_i H = a_j H$.

Moreover, from (iii) of the Lemma above it follows that all cosets have exactly |H| number of elements. Therefore

 $|G| = |H| + |H| + \ldots + |H| \implies |G| = d|H|,$

and the result follows. \blacksquare

Corollary 1:

If G is a finite group and $a \in G$, then the order of a is a divisor of |G|.

Proof:

By the Theorem above, the order of the element a is equal to the order of the subgroup $H = \langle a \rangle$. By Lagrange's Theorem, |H| divides |G|, therefore the order a divides |G|.

Corollary 2:

If a finite group G has order m, then $a^m = 1$ for all $a \in G$.

Proof:

Let d be the order of a. By Corollary 1, $d \mid m$; that is, m = dk for some integer k. Thus,

$$a^m = a^{dk} = (a^d)^k = 1. \blacksquare$$

Corollary 3:

If p is a prime, then every group G of order p is cyclic.

Proof:

Choose $a \in G$ with $a \neq 1$, and let $H = \langle a \rangle$ be the cyclic subgroup generated by a. By Lagrange's Theorem, |H| is a divisor of |G| = p. Since p is a prime and |H| > 1, it follows that

$$|H| = p = |G|,$$

and so H = G, as desired.

Definition:

An operation on a set G is a function $*: \overline{G \times G} \to \overline{G}$.

Definition:

A group is a set G which is equipped with an operation * and a special element $e \in G$, called the <u>identity</u>, such that

(i) the associative law holds: for every $x, y, z \in G$ we have x*(y*z) = (x*y)*z;(ii) e * x = x = x * e for all $x \in G;$

(iii) for every $x \in G$, there is $x' \in G$ (so-called, <u>inverse</u>) with x * x' = e = x' * x.

Definition:

A subset H of a group G is a <u>subgroup</u> if

(i) $e \in H$; (ii) if $x, y \in H$, then $x * y \in H$; (iii) if $x \in H$, then $x^{-1} \in H$. $\begin{array}{l} \underline{\text{Definition}}\\ \text{If G is a group and $a \in G$, write}\\ \langle a \rangle = \{a^n : n \in Z\} = \{\text{all powers of a};\\ \langle a \rangle \text{ is called the } \underline{\text{cyclic subgroup}} \text{ of G generated by a.} \end{array}$

Definition:

A group G is called <u>cyclic</u> if $G = \langle a \rangle$ for some $a \in G$. In this case a is called a generator of G.

<u>Definition</u>:

Let G be a group and let $a \in G$. If $a^k = 1$ for some $k \ge 1$, then the smallest such exponent $k \ge 1$ is called the <u>order</u> of a; if no such power exists, then one says that a has <u>infinite order</u>.

Definition:

If G is a finite group, then the number of elements in G, denoted by |G|, is called the <u>order</u> of G.

Theorem:

Let G be a finite group and let $a \in G$. Then

$$ext{ order of } a = |\langle a
angle|.$$

<u>Fermat's Little Theorem</u>:

Let p be a prime. Then $n^p \equiv n \mod p$ for any integer $n \geq 1$.

<u>Proof</u> (Sketch): We distinguish two cases. Case A: Let $p \mid n$, then, obviously, $p \mid n^p - n$, and we are done.

Case B: Let

 $p \not\mid n.$

Consider the group Z_p^{\times} and pick any $[a] \in Z_p^{\times}$. Let k be the order of [a]. We know that $\langle [a] \rangle$ is a subgroup of Z_p^{\times} and by the Theorem above we obtain

 $|\langle [a]
angle|=k.$

<u>Lemma</u> (Lagrange's Theorem): If H is a subgroup of a finite group G, then |H| divides |G|.

By Lagrange's Theorem we get $|\langle [a] \rangle|$ divides $|Z_p^{\times}|,$ which gives

$$k\mid p-1,$$
 since $|\langle [a]
angle |=k$ and $|Z_p^ imes |=p-1.$ So $p-1=kd$

for some integer d. On the other hand, since k is the order of [a], it follows that for any $n \in [a]$ we have

$$n^k \equiv 1 \mod p,$$

hence

$$n^{kd} \equiv 1^d \equiv 1 \mod p$$
,

and the result follows, since kd = p - 1.

Definition:

If *H* is a subgroup of a group *G* and $a \in G$, then the <u>coset</u> aH is the following subset of *G*:

$$aH = \{ah : h \in H\}.$$

Remark:

Cosets are usually not subgroups. In fact, if $a \notin H$, then $1 \notin aH$, for otherwise

$$1=ah \quad \Longrightarrow \quad a=h^{-1}
ot\in H,$$

which is a contradiction.

Example:

Let $G = S_3$ and $H = \{(1), (12)\}$. Then there are 3 cosets:

$$(12)H = \{(1), \ (12)\} = H,$$

 $(13)H = \{(13), (123)\} = (123)H,$

 $(23)H = \{(23), (132)\} = (132)H.$

<u>Lemma</u>:

Let H be a subgroup of a group G, and let $a, b \in G$. Then

(i) $aH = bH \iff b^{-1}a \in H$.

(ii) If $aH \cap bH \neq \emptyset$, then aH = bH.

(iii) |aH| = |H| for all $a \in G$.

Proof:

(i) \Rightarrow) Let aH = bH, then for any $h_1 \in H$ there is $h_2 \in H$ with $ah_1 = bh_2$. This gives

$$b^{-1}a = h_2h_1^{-1} \implies b^{-1}a \in H,$$

since $h_2 \in H$ and $h_1^{-1} \in H$.

 $\Leftarrow) \text{ Let } b^{-1}a \in H. \text{ Put } b^{-1}a = h_0.$ Then

 $aH \subset bH, ext{ since if } x \in aH, ext{ then } x = ah$

$$x=b(b^{-1}a)h=b\underbrace{h_0h}_{h_1}=bh_1\in bH$$

and

 $bH \subset aH$, since if $x \in bH$, then x = bh \Downarrow $x = a(b^{-1}a)^{-1}h = a\underbrace{h_0^{-1}h}_{h_2} = ah_2 \in aH.$ So, $aH \subset bH$ and $bH \subset aH$, which

So, $aH \subset bH$ and $bH \subset aH$, which gives aH = bH.

(ii) Let $aH \cap bH \neq \emptyset$, then there exists an element x with

(iii) Note that if h_1 and h_2 are two distinct elements from H, then ah_1 and ah_2 are also distinct, since otherwise

$$egin{aligned} ah_1&=ah_2\ &&\Downarrow\ a^{-1}ah_1&=a^{-1}ah_2\ &&\Downarrow\ &&\downarrow\ &&h_1&=h_2, \end{aligned}$$

which is a contradiction. So, if we multiply all elements of H by a, we obtain the same number of elements, which means that |aH| = |H|.

Lagrange's Theorem:

If H is a subgroup of a finite group G, then

|H| divides |G|.

Proof:

Let |G| = t and

$\{a_1H, a_2H, \ldots, a_tH\}$

be the family of all cosets of H in G. Then

$G = a_1 H \cup a_2 H \cup \ldots \cup a_t H,$

because $G = \{a_1, a_2, \ldots, a_t\}$ and $1 \in H$. By (ii) of the Lemma above for any two cosets a_iH and a_jH we have only two possibilities:

 $a_iH\cap a_jH=arnothing ext{ or } a_iH=a_jH.$

Moreover, from (iii) of the Lemma above it follows that all cosets have exactly |H|number of elements. Therefore

 $|G| = |H| + \ldots + |H| \Longrightarrow |G| = d|H|,$

and the result follows.

Corollary 1:

If G is a finite group and $a \in G$, then the order of a is a divisor of |G|.

Proof:

By the Theorem above, the order of the element a is equal to the order of the subgroup

$$H = \langle a
angle.$$

By Lagrange's Theorem, |H| divides |G|, therefore the order a divides |G|.

Corollary 2:

If a finite group G has order m, then $a^m = 1$

for all $a \in G$.

Proof:

Let d be the order of a. By Corollary 1, $d \mid m$; that is,

$$m = dk$$

for some integer k. Thus,

$$a^m=a^{dk}=(a^d)^k=1.$$
 $lacksim$

Corollary 3:

If p is a prime, then every group G of order p is cyclic.

Proof:

Choose $a \in G$ with $a \neq 1$, and let

 $H=\langle a
angle$

be the cyclic subgroup generated by a. By Lagrange's Theorem, |H| is a divisor of |G| = p. Since p is a prime and |H| >1, it follows that

$$|H|=p=|G|,$$

and so H = G, as desired.