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Emanuel Kiero«ski

1 Groups, rings, �elds

1.1 Algebraic structures

De�nition 1 An algebraic structure is a tuple A = (A, f1, f2, . . .) consisting of a set A and operations
f1, f2, . . . de�ned on A.

A is called the universe of A. We often denote both algebra and its universe by the same symbol. Each
of the operations f1, f2, . . . has a �xed arity. An operation of arity n (n-ary operation) is a function from
An to A. Operations of arity 0 are called constants; a constant is identi�ed with a distinguished element of
the universe. We will usually work with algebraic structures with a �nite set of (usually binary) operations.

A note about external operations (...).

Example 2 Examples of algebraic structures:

(a) (Z,+,−, ·, 0).
(b) (P({1, 2, . . . , n},∪,∩,′ ).

In the following de�nition we distinguish some properties which may be enjoyed by binary operations.

De�nition 3 (a) an operation · is commutative, if ∀a, b ∈ A a · b = b · a,
(b) an operations · is associative, if ∀a, b, c ∈ A (a · b) · c = a · (b · c); for example, the power operation in

the set of natural numbers is not associative,

(c) an element e is a left identity or a left neutral element of an operation ·, if ∀a ∈ A ea = a.

(d) an element e is a right identity or a right neutral element of an operation ·, if ∀a ∈ A ae = a.

(e) an element e is an identity or a neutral element of the operaton ·, if ∀a ∈ A ea = ae = a.

(f) for an operation with an identity e, an element b is a left inverse of a, if b · a = e,

(g) for an operation with an identity e, an element b is a right inverse of a, if a · b = e,

(h) an element a is an inverse of b, if ab = ba = e

(i) an operation · is distributive over an operation +, if ∀a, b, c ∈ A a · (b + c) = a · b + a · c and
∀a, b, c ∈ A (b+ c) · a = b · a+ c · a.

The following facts can be easily proved:

Fact 4 (i) If an operation has a right identity el and a left identity er, then el = er. Thus, an operation
has at most one identity.

(ii) If an operation · is associative and has an identity e, then for each element a, if bl is a left inverse of
a, and br is a right inverse of a, then bl = br. Thus, each element has at most one inverse.

Some classes of algebraic structures have a special signi�cance. Now we introduce three of them.

De�nition 5 (a) An algebraic structure (A, ·), with a binary operation · is called a group if:

• · is associative,
• · has an identity,

• each element has an inverse.

additionally, if · is commutative, then the group is called commutative or abelian.

(b) An algebraic structure (A,+, ·) with binary opeations +, · is called a ring if:

• (A,+) is an abelian group,

• · is associative,
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• · is distributive over +.

(c) (A,+, ·) is a �eld if

• (A,+, ·) is a ring,

• (A \ {0}, ·) is a commutative group (by 0 we denote the identity of +);

A few examples of groups are given in the next section. Examples of �elds are number �elds, e.g. the set
of rational numbers with naturally de�ned + and ·. One can construct also �nite �elds. An example of a
ring which is not a �eld: the set of integers with naturally de�ned + and · (or the set of even integers � it
even lacks an identity of ·). A very important role is played by the rings Zn = ({0, 1, . . . n− 1},+n, ·n), with
addition and multiplication modulo n.

1.2 Groups - basic properties and examples

The notion of a group was introduced in the previous section. There are also some similar relaxed notions:
a semigroup is a non-empty set with an associative operation, and a monoid is a semigroup with an identity.

Conventions. The group operation is often called multiplication; we write ab instead of a · b; we use 1 to
denote the identity; we use a−1 to denote the inverse of a; an denotes the result of multiplying a n-times
by itself a · a · . . . · a (the n-th power of a). This �style� of speaking about groups is called multiplicative.
Alternatively, we can use the additive style: + for the operation; 0 for the identity; −a for the inverse of −a.
In these notes we usually use the multiplicative style but denote the identity by e.

Remark. The notion of a group may be de�ned in a slightly di�erent way: as a set with a binary operation
·, unary operation −1 and a constant 1, with the appropriate properties of the operations.

1.3 Examples

Example 6 We give a few examples of groups (and check that they are groups indeed):

(a) (Z,+) � the set of integers with addition

(b) (R \ {0}, ·) � the set of non-zero real numbers with multiplication,

(c) the set of bijections from X to X with the operation of function composition, for an arbitrary non-
empty setX,

(d) (Z4,+4) � {0, 1, 2, 3} with addition modulo 4 (a +4 b is de�ned as the remainder from the division of
a+ b by 4,

(e) (Z∗5, ·5) � {1, 2, 3, 4} with multiplication modulo 5,

(f) {1, 3, 5, 7} with multiplication modulo 8 (the Klein four-group),

(g) the group of rotations of a square (with composition),

(h) the group of symmetries of a square, with composition (a symmetry is a transformation preserving the
distances between points). There are 8 symmetries of a square: 4 rotations (including identity) and 4
re�ections (through the horizontal line, vertical line and two diagonals).

All the above groups, except (c) and (h) are abelian.

1.4 Group tables

To de�ne a group we can use a group table. Below we present a table of a group from point (f) of Example
6:

· 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

And here is a table of the group of symmetries of a square:
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· id r r′ r′′ h v d d′

id id r r′ r′′ h v d d′

r r r′ r′′ id d′ d h v
r′ r′ r′′ id r v h d′ d
r′′ r′′ id r r′ d d′ v h
h h d v d′ id r′ r r′′

v v d′ h d r′ id r′′ r
d d v d′ h r′′ r id r′

d′ d′ h d v r r′′ r′ id

Let us observe the properties of group tables:

Observation 7 (i) there exists an element (identity) whose row and column are exactly the same as the
row and column describing the elements of the universe

(ii) each row and each column contain the identity; the identities are placed symmetrically through the main
diagonal of the table.

(iii) each row and each column is a permutation of the universe.

The above properties are not su�cient conditions for being a group - we still have to ensure that the
gropu operation is associative. The last observation from 7 is a consequence of the following lemma:

Lemma 8 In a group, the equlities ax = b and ya = b have unique solutions.

Corollary 9 In a group, cancellations law hold. Left cancellation law: ab = ac implies b = c. Right
cancellation law: ba = ca implies b = c.

1.5 Group isomorphisms

We de�ne the notion of a group isomorphism.1

De�nition 10 We say that groups (A, ·1) and (B, ·2) are isomorphic if there exists a bijection F : A→ B,
such that ∀a, b ∈ A a ·1 b = c if and only if F (a) ·2 F (b) = F (c). F is called an isomorphism between groups
A and B.

It is not di�cult to see that isomorphism preserves all the properties of the group operation. In particular:

Fact 11 If F is an isomorphism from A to B, then F returns the identity of B for the identity of A, and
the inverse of F (a) in B for the inverse of a in A.

This means that isomorphic groups have identical structures and essentially di�ers only in names of
elements. The following observation is straightforward:

Fact 12 The relation on the set of all groups, containing exactly those pairs of groups which are isomorphic,
is an equivalence relation.

Example 13 Groups (d), (e) and (g) from Example 6 are pairwise isomorphic. Groups (d) and (g) are not
isomorphic.

Hence, the groups (d), (e) and (g) are in fact �incarnations� of the same abstract object. Soon we will
see that, up to isomorphism there are only two four-element groups.

1.6 Orders of elements and orders of groups

We de�ne the power of an element in a group in a natural way.

De�nition 14 (a) a0 = e, where e is the identity

(b) am = a · am−1, for positive m

(c) am = (a−1)m, for negative m

The following equalities hold:

Fact 15 (i) aras = ar+s

1The notion of isomorphism can be naturally generalized to other algebraic structures.
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(ii) (ar)s = ars.

Note however that (ab)n = anbn is not necessarily true in a group (but it holds in abelian groups).

De�nition 16 The order of an element a in a group is the smallest positive integer m such that am = e.
If no such m exists, the group has an in�nite order. The order of a group is its cardinality, i.e. the number
of its elements.

A few examples were given during the lecture. Question: is it possible that an element of a �nite group
has in�nite order? No.

1.7 Subgroups, generators, and cyclic groups

De�nition 17 We say that B is a subgroup of a group A if B ⊆ A and B is a group.

If (A, ·) is a group then the set containing only the identity is its subgroup. According to the de�nition
a whole group itself is also its own subgroup. These two special subgroups are called trivial.

Example 18 (a) The group of rotations of a square is a subgroup of the group of symmetries of this
square.

(b) The set of even integers with addition is a subgroup of integers.

Note that B has to contain the identity; for every a ∈ B the inverse of a a−1 has to belong to B; and B
has to be closed under the operation · (a, b ∈ B ⇒ ab ∈ B).

For �nite groups we can even prove:

Lemma 19 A non-empty subset H of a �nite group G is its subgroup if and only if ∀a, b ∈ H we have
ab ∈ H (in other words: H is closed under the operation ·).

Proof: Let us tak an element a ∈ H. It has a �nite order m in G, am = e. Hence, am−1 is the inverse of a.
2

De�nition 20 (a) Let G be a group and X its non-empty subset. The smallest subgroup of G containing
all elements of X is called a subgroup generated by X.

(b) If a group G is generated by a singleton set {a} (for simplicity we also say that G is generated by the
element a, or that a is a generator of G), then G is called cyclic.

Fact 21 (i) The subgroup generated by X consists of all possible products of the form x1x2 . . . xk, where
xi ∈ X or x−1

i ∈ X, for k ∈ N. Not all of this products are distinct of course.

(ii) If a is a generator of a �nite (sub)group H, then H = {a, a2, a3, . . . am}, for the smallest m > 0, such
that am = e. Moreover ai 6= aj for i 6= j, 0 < i, j ≤ m.

Note that the number of elements of a cyclic group equals the order of its generator. A cyclic group may
have more than one generator.

Example 22 (a) A generator of (Z,+) is 1.
(b) A generator of a group of rotations of a square is r � 90 degree rotation (or r′′ � 270 degree rotation).

(c) A generator of the additive group (Z4,+4) is 1 (or 3).
(d) The Klein four-group is not cyclic. To generate this group we need at least two elements, e.g {3, 5}.
(e) The subgroup of the Klein four-group generated by 3 is {1, 3}.
(f) The subgroup of the group of symmetries of a square, generated by r (90 degree rotation) consists of

all rotations (including identity).

(g) The group of symmetries of a square is not cyclic. It can be generated, e.g. by {r, d}.

Theorem 23 If a group G is cyclic, and a its generator, then the order of a de�nes G up to isomorphism.
More precisely, if the order of a is in�nite then G is isomorphic to (Z,+), and if this order is k, then G is
isomorphic to the additive group (Zk,+k).
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1.8 Groups of permutations

An important class of groups are groups of permutations. A permutation of a set X is a bijection of X to
itself. In the example 6(c) we observed that the set of permutations of a set is a group with the operation
of composition. This group if not abelian if |X| > 2.

We usually work with permutations of the sets {1, 2, 3, . . . , n}. The group of such permutations is denoted
by Sn. A permutation f can be represented in a two-row form:(

1 2 3 . . . n
f(1) f(2) f(3) . . . f(n).

)
Remarks about the operation of composition (how to compute, Sn is closed under composition, inverses)
An important class or permutations are cycles.

De�nition 24 A k-cycle (cycle of length k) is a permutation f of the set X = {1, 2, . . . , n} (k ≤ n), such
that there exist 1 ≤ a1, a2, . . . ak ≤ n (ai 6= aj dla i 6= j), such that f(a1) = a2, f(a2) = a3, . . ., f(ak) = a1

and f(a) = a for a 6∈ {a1, . . . ak}. A cycle is denoted by (a1, a2, . . . , ak). 2-cycles are also called transpositions.
Cycles (a1, a2, . . . ak1) and (b1, b2, . . . bk2) are disjoint if ai 6= bj for all i, j.

Note that disjoint f, g cycles commute, i.e. fg = gf .
The set of permutations Sn has the following properties:

Theorem 25 (i) Any permutation can be uniquily expressed as a product (composition) of disjoint cycles.

(ii) Any permutation can be expressed as a product of transpositions (not necessarily disjoint; not uniquely)

(iii) Any transposition can be expressed as a product of transpositions of an odd number of transpositions of
neighbouring elements. Hence, Sn is generated by the set of all transpositions of neighbouring elements.

Proof:

(i) Easy.

(ii) Implied by (a1, a2, . . . , ak) = (a1, ak)(a1, ak−1) . . . (a1, a3)(a1, a2).
(iii) Implied by (j, l) = ((j, j + 1)(j + 1, j + 2) . . . (l− 2, l− 1)(l− 1, l)(l− 2, l− 1) . . . (j + 1, j + 2)(j, j + 1).

2

Fact 26 In the group Sn:

(i) A k-cycle has order k,

(ii) the order of any permutation is the least common multiplier of the orders of the cycles appearing in
the decomposition of the permutation into disjoint cycles.

De�nition 27 Let f ∈ Sn and P (f) =
∏

1≤i<j≤n(f(j) − f(i)). The sign of P (1 for positive P , −1 for
negative P ) is called a sign of permutation and denoted by sgn(f). Permutations with sign 1 are called even,
with sign −1 � odd.

Note that P (f) and P (g) for f, g ∈ Sn have the same absolute value, but this value does not play an
important role in the de�nition of parity of a permutation. An alternative de�nition uses the notion of
an inversion: elements f(i) and f(j), i < j are an inversion in f if f(i) > f(j); a permutation is even
if and only if it has an even number of inversions. It is not di�cult to see that this de�nition is equivalent
to De�nition 27.

Lemma 28 Let f be a permutation, and t a transposition from Sn. Then sgn(f) = −sgn(ft).

Proof: We prove a lemma for t a transposition of neighbouring elements. Then we use Theorem 25, part
(iii).

Lemma 29 A permutation f is even if and only if in its any decomposition into transpositions the number
of transpositions is even.
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Proof: Let us decompose f into a product of transpositions: f = t1t2 . . . tk. We can thus write f =
int1t2 . . . tk, where in is the identity in Sn. Clearly, sgn(in) = 1. We use lemma 28. 2

Using lemma 29 it is easy to see:

Fact 30 (i) A product of two even permutations is an even permuation.

(ii) A product of two odd permutations is an even permuation.

(iii) A product of an even and an odd permutation is odd.

(iv) The inverse permutation of an even permutation is even.

(v) The inverse permutation of an odd permutation is odd.

Points (i), (iv) (or point (i) and lemma 19) imply:

Fact 31 The set of all even permutations of Sn is its subgroup.

The above group is denoted by An and called an alternating group.
It is easy to show that |Sn| (the order of Sn) equals n!. We prove that exactly one half of permutations

in Sn is even.

Lemma 32 For n > 1: |An| = n!/2.

Proof: Let f1, f2, . . . , fk be a list of all even permutations, and t � any transposition. We show that
tf1, tf2, . . . , tfk is a list of all odd permutations in Sn and that tfi 6= tfj if i 6= j. 2

Now we observe that every �nite group is essentially a subgroup of a group of permutations.

Theorem 33 (Cayley) Let G be a �nite group of order n. Then G is isomorphic to a subgroup of Sn.

Proof: W.l.o.g we can assume that G = {1, 2, 3, . . . , n}. We construct a function F : G → Sn. For a ∈ G,
we de�ne F (a) = fa, where fa : G → G is such that fa(b) = ab for all b ∈ G. It is easy to see that fa is a
bijection for any a ∈ G. Similarly, F is 1-1 (since fa 6= fb for a 6= b). Now we show that the image F (G) is
a subgroup of Sn. By Lemma 19 it is su�cient to show that the product of two bijections from F (G) is in
F (G). This is implied by the equality fafb = fab. This equality proves also that F preserves the operation
·. 2
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1.9 Cosets and Lagrange's Theorem

De�nition 34 We de�ne an operation · on the set of subsets of a group. Let X and Y be subsets of a group
G. X · Y := {xy : x ∈ X, y ∈ Y }. We simplify the notation for singleton sets, and e.g. instead of {a} · Y we
write aY .

Remark The operation de�ned above is associative and has an identity, but none of the sets with at least
2 elements has an inverse.

Every subgroup de�nes cosets of a group.

De�nition 35 Let H be a subgroup of a group G. A right coset of H is each of the sets Ha, for a ∈ G.
Similarly, a left coset is each of the sets aH, for a ∈ A. In particular H is its own right and left coset (since
H = He = eH). The number of right coset is called an index of a subgroup H.

Lemma 36 (i) If H is �nite then each coset of H has |H| elements.

(ii) For every pair W1, W2 of right (left) cosets of a subgroup H either W1 = W2 or W1 ∩W2 = ∅. Thus
right (left) cosets of H for a division of G.

Proof:

(i) Implied by canellation laws.

(ii) Let x ∈ Ha and x ∈ Hb. Then x = h1a = h2b, for some h1, h2 ∈ H. Let y ∈ Ha. Then y = h3a =
h3h

−1
1 x = h3h

−1
1 h2b ∈ Hb, since h3h

−1
1 h2 ∈ H. Thus Ha ⊆ Hb. Similarly we show that Hb ⊆ Ha. Of

course each element a is a member of the coset Ha.

2

The above Lemma implies in particular that each subgroup has the same number of left and right cosets.

Example 37 (a) Consider the group of symmetries of a square from Example 6. H = {i, h} is its sub-
group. It de�nes four left cosets: Hi : {i, h}, Hr′ : {r′, v}, Hr : {r, d}, and Hr′′ = {r′′, d′}.

(b) Let G = S6 and H be the set of all f for which f(1) = 1. We have 6!/5! = 6 left cosets (since |H| = 5!).
Each of the coses is determined by the value of permutations on 1.

The consequence of Lemma 36 is the following theorem:

Theorem 38 (Lagrange) The order of a �nite group is a multiple of the order of its every subgroup.

Corollary 39 The order of an element of a �nite group G divides |G|

Proof: An element a generates a cyclic subgroup: {a, a2, a3, . . . , am = e} G.

Corollary 40 In a �nite group of order k, for every a we have ak = e.

Corollary 41 Every group G, whose order is a prime number is cyclic.

Thus we have, up to isomorphism, only one group of order 5 � (Z5,+ mod 5).

1.10 Groups acting on sets

De�nition 42 We say that a group G acts on a set X if there exists a function from G×X into X, (notation:
(a, x)→ a.x) such that:

(a) e.x = x for all x ∈ X,

(b) a.(b.x) = (ab)x for all a, b ∈ G, x ∈ X

Fact 43 For every a ∈ G, the function fa(x) = a.x is a bijection of X into X.

De�nition 44 Assume that a group G acts on a set X.

(a) A stabilizer of an element x ∈ X is the subgroup stab(x) = {a ∈ G : a.x = x}.
(b) An orbit of an element x ∈ X is the set orb(x) = G.x = {a.x : a ∈ G}

Example 45 A subgroup H acts on the group G in a few ways:

(a) h.a = ha. In this case, orbits are right cosets of H. Stabilizer: {e}
(b) h.a = ah−1. Orbits are left cosest of H.
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Example 46 Every subgroup H of the permutation group Sn acts on the set {1, 2, . . . , n} in a natural way:
f.x = f(x). stab(x) is the set of permutations that do not a�ect x. orb(x) is the set of those elements
which x may be moved to by permutations from H. What are the orbits of the subgroup of S8 generated
by (1, 7, 4, 2)(6, 8)? (answer: {1,2,4,7}, {3}, {5}, {6,8})

Theorem 47 The set of orbits forms a division of X. In other words: for all x, y ∈ X we have either
orb(x) = orb(y) or orb(x) ∩ orb(y) = ∅.

Theorem 48 Let G acts on a set X. Then for each x ∈ X we have

|G| = |stab(x)||orb(x)|.

Proof: We know that stab(x) is a subgroup of G. By Lemma 36 it is enought to show the the number
of the cosets of stab(x) equals the number of the orbits of x. We de�ne a bijection F from the set of left
cosets of stab(x) to orb(x): F (a · stab(x)) = a.x. Soundness of de�nition: If astab(x) = bstab(x), then
b−1a ∈ stab(x), so b−1a.x = x, And thus a.x = b.x. F is �onto�: obvious. F is �1-1�: if a.x = b.x, then
b−1a.x = x, and thus b−1a ∈ stab(x), which implies that a ∈ bstab(x).

2

Now we formulate an important combinatorial lemma. Let G acts on X. Let X/G denotes the set of
orbits, and fix(x) = {x ∈ X : a.x = x}.

Lemma 49 (Burnside)

|X/G| = 1
|G|

∑
x∈X

|stab(x)| = 1
|G|

∑
a∈G

|fix(a)|.

Proof: We check �rst that both formulas give the same results. Let S denotes the set of pairs (a, x) ∈ G×X
such that a.x = x. For a �xed a the number of such pairs is |fix(a)|. Thus |S| =

∑
a∈G |fix(a)|. On the

other hand, for a �xed x the number of such pairs is |stab(x)|. Thus |S| =
∑

x∈X |stab(x)|. By theorem

48 the elements from the same orbit orb(x) have the stabilizers of the same cardinality G
|orb(x)| . This gives:∑

x∈X |stab(x)| =
∑

O∈G/X(
∑

x∈O |stab(x)|) =
∑

O∈X/G |O| ·
|G|
|O| = |G||X/G|. 2

Example 50 LetB be the set of boolean functions of three variables, i.e. function of the type {0, 1}{x1,x2,x3} →
{0, 1}. Such functions may be implemented as logical circuits with three inputs and one output. What is
the minimal number of circuits which are necessary to implement an arbitrary function from B? Obviously,
|B| = 223

= 256, but we do not really need 256 circuits. - a given circuit may be used to compute several
functions by reconnecting the wires with input signals. For example, using a circuit returning 1 if and only
if its �rst input is set to 1 and the remaining inputs are 0s we can implement three boolean functions.

Let us de�ne an action of S3 on B. For f ∈ S3 and b ∈ B, (f.b)(y1, y2, y3) = b(yf−1(1), yf−1(2), yf−1(3)).
Note, that the elements belonging to the same orbit can be implemented by the same circuit. So the
question is: how many orbits is de�ned by the action of S3 on B? We count the number of �xed points of
all permutations:

(a) |fix(id)| = 256
(b) |fix((1, 2))| = |fix((2, 3))| = |fix((1, 3))| = 26, since, e.g. functions from fix((1, 2)) satisfy f(x1, x2, x3) =

f(x2, x1, x3), so to de�ne them 6 values is required.

(c) |fix((1, 2, 3))| = |fix(1, 3, 2)| = 24, analogously, 4 values required.

Finally, by Burnside's Lemma we have |B/S3| = 1
6 (256 + 3 ∗ 64 + 2 ∗ 16) = 80.
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1.11 Euclidean Algorithm

For integers a, b we write a|b if a divides b, i.e. if there exists an integer k such that b = ka. A number n > 1
is prime if its only positive divisors are 1 and n.

Fact 51 For integers a and b, b 6= 0 there exists exactly one non-negative integer r < b such that for some q
we have a = qb+ r; the number r is called the reminder of the division of a by b and is denoted by a mod b.

For any pair of integers a, b there exists their greatest common divisor, denoted gcd(a, b). If gcd(a, b) = 1
then a and b are called relatively prime.

The greatest common divisor of positive numbers m and n can be computed by Euclidean algorithm:

(1) m0 := m, : n0 = n.

(2) i = 0
(3) If mi = 0 return ni; If ni = 0 return mi.

(4) If mi > ni, then mi := mi mod ni else ni := ni mod mi

(5) i := i+ 1. Go to 3.

Note �rst, that the algoritm always terminates: the numbers mi and ni are nonnegative and their sum
decreases so the process cannot last in�nitely. To see that the algorithm is correct we prove the following
lemma:

Lemma 52 gcd(a, b) = gcd(a mod b, b).

Now it is easy to see that the gcd(mi, ni) is preserved by the algorithm and so the value returned is
correct. An important consequence of the algorithm is the following theorem:

Theorem 53 Let m and n be integer numbers. Then there exist integers a and b such that am + bn =
gcd(m,n).

Proof: We inductively prove that the values of mi and ni are in the set {am + bn : a, b ∈ Z}. One of this
values is returned as gcd(m,n).

The values of a and b from Theorem 53 can be computed by the extended Euclidean algoritm.

Example 54 Computations for m = 81 and n = 57:

81 = 1 · 57 + 24
57 = 2 · 24 + 9
24 = 2 · 9 + 6
9 = 1 · 6 + 3
6 = 2 · 3 + 0

So gcd(81, 57) = 3. To �nd a and b we �reverse� the computations:

3 = 9− 1 · 6
3 = 9− 1 · (24− 2 · 9) = −1 · 24 + 3 · 9

3 = −1 · 24 + 3 · (57− 2 · 24) = 3 · 57− 7 · 24
3 = 3 · 57− 7 · (81− 57) = −7 · 81 + 10 · 57

A particular corollary of 53 is:

Corollary 55 gcd(m,n) = 1 if and only if am+ bn = 1 for some integers a i b.

1.12 Modular arithmetic

Recall that the result of a+m b, for a, b ∈ Z, is de�ned as the reminder of division of a+ b by m, i.e. (a+ b)
mod m (and similarly for ·m). We observed that Zm = {0, 1, . . . ,m − 1} forms a commutative group with
+m for all m > 0.

We introduce a relation ≡m in the set of integers: a ≡m b if and only if a− b = km for some k ∈ Z (i.e.
when m divides a − b, which is equivalent to the fact that the reminders of a and b by m are equal). It is
easy to check that ≡m is an equivalence relation with m equivalence classes, determined by reminders of the
division by m.

Fact 56 (i) if a ≡m b and c ≡m d, then a+ c ≡m b+ d

9



(ii) if a ≡m b and c ≡m d, then ac ≡m bd

(iii) if a ≡m b, then an ≡m bn for n ∈ N

In particular (a+b) mod m = ((a mod m)+(b mod m)) mod m oraz (a·b) mod m = ((a mod m)·(b
mod m)) mod m � because a ≡m a mod m. The above fact imply that (Zm,+m, ·m) is a ring (commutative,
with an identity): +m satis�es all conditions of a group operation and is commutative, all the remaining
conditions of rings are also satis�ed: We check e.g. that a ·m (b+m c) = a ·m b+m a ·m c.

Lemma 57 An element a in a ring Zm has an inverse (with respect to ·m) if and only if gcd(a,m) = 1.

Proof: ⇒ If a ·m b = 1, i.e. ab mod m = 1 then ab = qm + 1 for some q, so ab − qm = 1. By Corollary
55 gcd(a,m) = 1. ⇐ Again by 55 we have that ax + my = 1 for some integers x i y. In other words:
ax = −ym+ 1, i.e. ax mod m = 1, so x mod m is the inverse of a. 2

The above lemma implies that:

Theorem 58 (i) ({1, 2, . . .m− 1}, ·m) is a group if and only if m is a prime number.

(ii) The ring (Zm,+m, ·m} is a �eld if and only if m is a prime number.

For any �eld (C,+, ·) we say that the group (C,+) is its additive group, and that the group (C \{0}, ·) is
its multiplicative group. For any ring (P,+, ·) we say that + is an additive operation, and · � a multiplicative
operation Let Z∗m denotes the subset of Zm containing element relatively prime to m. |Z∗m| is denoted as

ϕ(m) (this is called the Euler's function). It is easy to see that ϕ(p) = p− 1 for a prime p.

Theorem 59 The set of invertible elements (with respect to the multiplicative operation) of a ring forms
a group (with the multiplicative operation). In particular (Z∗m, ·m) is a group for any m > 0, as the set of
invertible elements of the ring(Zm,+, ·).

Recall that, by Corollary 40, for any gropu G, a|G| = e is satis�ed for any a ∈ G. This implies:

Theorem 60 (i) (Fermat's little theorem) If p is a prime number, then for any a ∈ Z, such that p
does not dived a, we have ap−1 ≡p 1.

(ii) (Euler) If gcd(m,n) = 1, then aϕ(m) ≡m 1 for any a ∈ Z.

Example 61 (a) An example application of Fermat's theorem: what is the reminder of the division of
21000000 by 101? We know that 2100 ≡101 1 (since 101 is a prime). 21000000 = (2100)10000 ≡101 1.

(b) What is the last digit in the decimal representation of 32009? We are looking for the result of multiplying
3 by itself 2009 times in Z10. 32 = 9, 33 = 7, 34 = 7 · 3 = 1, 32008 = 34·502 = (34)502 = 1. So, the result
is 3 · 1 = 3.

(c) The additive group (Zp,+p) for a prime p is cyclic (by Corollary 41). It can be also shown (but we
skip the proof), that the multiplicative group (Zp \{0}, ·p) is also cyclic. In this example we check that
2 is a generator of the multiplicative group Z101 (recall that 101 is a prime). We show that the order
of 2 is 100. It is enaugh to see that 220 and 250 are not equal to 1. Since the order of 2 has to be a
divisor of 100, and all divisor of 100 (less then 100) are divisors of 20 or 50 we have the required result.

In the above examples we observed that in a ring Zm we can easily compute powers. In the case whenm is
prime we can also easily compute inverses (Euclidean algorithm). These to properties we be very important
in applications to cryptography.

1.13 Chinese reminder theorem

De�nition 62 Let (G1, ·1), . . . , (Gk, ·k) be groups. Their product is the structure ((G1×, . . . ,×Gk), ·), whose
universe is the cartesian product of Gi-s and the operation is de�ned as follows: (g1, . . . , gk) · (g′1, . . . , g′k) =
(g1 ·1 g′1, . . . , gk ·k g′k).

Fact 63 The product of groups is a group.

Example 64 (a) Z6 is isomorphic to Z2×Z3 (with addition). Isomorphism: F (x) = (x mod 2, x mod 3)
(b) Z8 is not isomorphic to Z2 × Z4. It can be checked that Z2 × Z4 does not contain an element of order

8 and such an element exists in Z8 (1).

(c) Z2 × Z2 is isomorphic to Klein four-group.

Example 64 (a) can be generalized to the following theorem:

Theorem 65 (Chinese reminder theorem). Letm1,m2, . . . ,mk be pairwise coprime. Letm = m1m2 . . .mk.
Then Zm is isomorphic to Zm1 × Zm2 × . . .× Zmk

. The isomorphism can be de�ned as follows: F (x) = (x
mod m1, x mod m2, . . . x mod mk).
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Proof: (skipped during the lecture) F is 1-1: if F (a) = F (b), then a mod mi = b mod mi for all i, so
a ≡m b. This means that mi|(a − b) for all i. Since mi are pairwise coprime, so m1 . . .mk|(a − b), 2 but
|a− b| < m, and thus a = b. F is �onto�: Obvious: both sets are �nite and of equal cardinalities, and F is
1-1. F preserves the operation: F (a+m b) = (a+m b mod m1, a+m b mod m2, . . . a+m b mod mk) =
3 (a+ b mod m1, . . . , a+ b mod mk) =4(a mod m1, . . . , a mod mk) + (b mod m1, . . . , b mod mk). 2

Corollary 66 If m1, m2, . . ., mk are pairwise coprime, m = m1m2 . . .mk and ai ∈ {0, . . .mi − 1} then
there exists exactly one x, 0 ≤ x < m, such that:

x mod m1 = a1

x mod m2 = a2

. . .
x mod mk = ak

The system of congruences above can be e�ectively solved: x = (a1z1y1 + . . . akzkyk) mod m, where zi =
m/mi, and yi is a number such that ziyi ≡mi

1 (which can be found using extended Euclidean algorithm).
Proof of correctness: x mod m1 = (a1z1y1 + . . . akzkyk) mod m1 = ((a1z1y1 mod m1) + . . . + (akzkyk

mod m1)) mod m1 = a1 + 0 + . . .+ 0 = a1 (since m1 is a divisor of zi for i > 1). Similarly for all other mi.

Example 67 Find the smallest positive integer which gives the reminder 1 when divided by 2, 2 when
divided by 3, and 2 when divided by 7. Result: 23.

2This fact is implied by the following lemma: if m1, . . . , mk are pairwise coprime and each mi divides n, then the product

of all mi also divides n.
3In this point we use the following lemma: if mi|m, then a +m b ≡mi a + b).
4And here the fact 56 and the de�nition of the product of groups
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1.14 Rings and �elds

Recall:

(a) (A,+, ·) is called a ring if:

• (A,+) is a commutative group,

• operation · is associative,
• operation · is distributive over +.

(b) (A,+, ·) is a �eld if

• (A,+, ·) is a ring

• (A \ {0}, ·) is a commutative group (by 0 we denote the identity of +);

A ring is called commutative if its multiplicative operation is commutative. A ring is called a ring with
identity if its multiplicative operation has an identity. Every �eld is a ring. We usually use 0 to denote
the identity of +, 1 � the identity of · (if exists). −a is the additive inverse (opposite) of a, a−1 � is the
multiplicative inverse of a. Instead of a+ (−b) we often write a− b.

Fact 68 In every ring:

(i) 0 · a = 0.
(ii) (−x)y = x(−y) = −(xy)

Fact 69 In every �eld: ab = 0→ a = 0 ∨ b = 0.

The previous fact is not true in all rings. For example 2 · 2 = 0 in Z4. An element a of a ring R, for
which there exists a non-zero b such that ab = 0 is called a zero divisor.

1.15 Some info about rings of polynomials

De�nition 70 Let (R,+, ·) be a ring. An expression f = anx
n +an−1x

n−1 + . . . a1x
1 +a0x

0, where ai ∈ R,
is called a polynomial over the ring R. Elements ai are called coe�cients of polynomial. The greatest i for
which ai 6= 0 is called the degree of the polynomial and is denoted by deg(f). The coe�cient of such i is
called leading. A polynomial whose leading coe�cient is a0 is called a constant polynomial.

A special polynomial is the zero polynomial, f = 0. It does not has a leading coe�cient, and we assume
that its degree is−∞, When presenting a polynomial we usually skip aix

i for which ai = 0 (with the exception
of the zero polynomial). In the case of f = anx

n + an−1x
n−1 + . . . a1x

1 + a0x
0, we sometimes speak about

coe�cients ai, for i > n. We assume that such ai = 0. Two polynomials f = anx
n+an−1x

n−1+. . . a1x
1+a0x

0

and f = bmx
m + bm−1x

m−1 + . . . b1x
1 + b0x

0 are equal if for all i we have ai = bi.
With each polynomial f we associate in a natural way a function f(x) : R→ R (the value for an argument

b ∈ R is computed by substituting the value of b for x in the expression describing f). Note however, that
polynomialls and associated functions are formally di�erent notions.

Fact 71 It is not always the case that two distinct polynomials over the same ring describe distinct func-
tions.5

Proof: Let R be the �eld Z11, f = 0 and g = x11 − x. Both are associate with the zero function (to see
this for the second polynomial use Fermat's little theorem). Morover, observe that for any �nite ringR, the
set of polynomials over F is in�nite, while the set RR is �nite. 2

The set of polynomials over a ring R is denoted by R[x]. In the set R[x] we de�ne natural operations of
+ and ·:

De�nition 72 Let f = anx
n + an−1x

n−1 + . . . a1x
1 + a0x

0, g = bmx
n + bm−1x

m−1 + . . . b1x
1 + b0x

0. Then:

f + g =
∑

0≤i≤max{m,n}

(ai + bi)xi

f · g =
∑

0≤i≤m+n

(
∑

0≤j≤i

ajbi−j)xi

Example 73 Examples in Z6[x]. Let f = 3x2 + 2x + 2, g = 5x + 4. Then f + g = 3x2 + x, and
fg = 3x3 + 4x2 + 2x+ 2.

5But, as we see later, distinct polynomial over in�nite �elds describe distinct functions.

12



Fact 74 Let f and g be polynomials over a ring R of degrees m and n, respectively. Then

(i) The degree of f + g is not greater than max{m,n},
(ii) The degree of f · g is not greater than m+ n.

(iii) If R is a �eld, then the degree of f · g is m+ n. In particular, if f 6= 0 and g 6= 0, then fg 6= 0.

Proof: The �rst two points are obvious. The third is implied by the fact that in a �eld, ab = 0 implies
a = 0 or b = 0. So the product of leading coe�cients cannot be zero and thus becomes the leading co�cient
of the product of the polynomials 2

The proof of the following fact is routine:

Fact 75 Let (R,+, ·) be a ring. Then R[x] with the operation of addition and multiplication of polynomials
is a ring. If R is commutative, then R[x] is also commutative. If R has a multiplicative identity then R[x]
also has one.

1.16 Divisibility of polynomials

From this point we consider rings of polynomials over �elds. We usually denote a �eld by F . We show that
for polynomials we can develop a theory of divisibility, similar to the theory of divisibility of integers.

Fact 76 For any pair of polynomials f , g ∈ F [x], g 6= 0 there exists exactly one pair of polynomials q, r
such that deg(r) < deg(g) and f = qg + r. The polynomial r is called the reminder of division of f by g. In
particular, the reminder of the division of f by x− c is a constant.

Proof: Existence. If deg(f) < deg(g), then we take q = 0, r = f . In the other case we proceed inductively
by the degree of f . Let f = anx

n+an−1x
n−1+. . . a1x

1+a0x
0, g = bmx

n+bm−1x
m−1+. . . b1x1+b0x0, n ≥ m.

Consider the polynomial h = f − (anb
−1
m xn−m)g. The coe�cient of xn of h is 0, so deg(h) < deg(f) and we

may apply the inductive assumption h = q′g + r. Now f = h+ (anb
−1
m xn−m)g = q′g + r + (anb

−1
m xn−m)g =

(q′+(anb
−1
m xn−m))g+ r. Uniqueness. If f = qg+ r = q′g+ r′, then (q− q′)g = r′− r. The polynomial r− r′

has degree smaller than deg(g), so q = q′. This implies that r′ − r zero, so r′ = r. 2

The proof suggests a method for dividing polynomials. Let us see an example:

Example 77 Let us divide x3 + 2x by 2x+ 1 in Z7[x]. (...)

De�nition 78 We say that a polynomial f divides g if there exists a polynomial h such that g = f · h. As
in the case of integers we write then f |g.

Fact 79 (i) If fg = c, where c 6= 0 is a constant, then both f and g are constants.

(ii) If f |g and g|f , then f = cg for some constant c.

De�nition 80 We say that a non-constant polynomial f is irreducible (or prime) in F [x] if there exists no
pair of polynomials g, h, of degree smaller than deg(f) such that f = gh.

Note that all polynomials of degree 1 are irreducible.

De�nition 81 A greatest common divisor of polynomials f and g is a polynomial h which is a common
divisor of f and g of the smallest possible degree.

Soon we will show that every pair of non-zero polynomials has a greatest common divisor. It may be
noted that gcd of polynomials is unique up to a constant factor. More precisely, if h and h′ are greatest
common divisors of f and g, then h = ch′ for some constant c.

Lemma 82 (i) Every pair f , g ∈ F [x] has a gcd.

(ii) If h is a gcd of f and g, then there exist such a and b, that af + bf = h.

Example 83 An example: we compute gcd of x3 + x2 + 5x+ 5 and x3 + 5x in Z7.

Lemma 84 If f |gh and f is irreducible, then f |g or f |h.
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Fact 85 Every polynomial f can be uniquely represented (up to the order of fi) in the form f = cf1f2 . . . fk,
where c is a constant, and every fi is a irreducible polynomial with leading coe�cient 1.

Fact 86 If f and g are irreducible and f |h and g|h, then fg|h.

Theorem 87 (Bezout) The reminder of the division of f by x− c equlas f(c). In particular x− c|f if and
only if f(c) = 0.

An element c such that f(c) = 0 is called a root of polynomial f .

Fact 88 A polynomial f ∈ F [x] of degree n has at most n roots.

Proof: Assume to the contrary that there exist n + 1 roots a1, a2, . . . an+1. By the theorem of Bezouta f
divides by x−ai, for all i. Since x−ai are ireeducible, then f is divisible also by (x−a1)(x−a2) . . . (x−an+1).
The degree of the resulting polynomial is n+ 1, contradiction. 2

Theorem 89 Let x1, . . . , xn and y1, . . . , yn be elements of a �eld F . Then there exists exactly one polynomial
f of degree smaller than n such that f(xi) = yi for 1 ≤ i ≤ n.

Proof: We use Lagrange's interpolation formula to de�ne f : f = y1g1(x) + y2g2(x) + . . .+ yngn(x), where
gi(x) =

∏
j 6=i

x−xj

xi−xj
. Uniqueness is implied by the theorem about the number of roots of a polynomial.

2 Linear spaces

2.1 De�nition

De�nition 90 A set V is called a linear (vector) space over a �eld K if there are two operations de�ned:
+ : V × V → V i · : K × V → V and, for any α, β ∈ K, u, v ∈ V we have:

(a) (V,+) is a commutative group

(b) (α+ β) · v = α · v + β · v
(c) α · (v + u) = α · v + α · u.
(d) (α · β) · v = α · (β · v)
(e) 1 · v = v (where 1 is the identity of the multiplicative operation in K).

Elements of V are called vectors, elements of K � scalars.

We usually use + and · to denote operation in K and operation on vectors. The identity of (V,+) is
denoted by ~0.

The following properties can be derived from the de�nition of linear spaces:

Fact 91 For any α ∈ K and v ∈ V :
(i) 0 · v = ~0 (0 is the identity of the additive operation in K)

(ii) α · ~0 = ~0
(iii) αv = ~0 if and only if α = 0 or v = ~0
(iv) (−1)v is the inverse of v

2.2 Space Kn

Let K be an arbitrary �eld. By Kn we denote the set of n-element sequences of elements from K: Kn =
{(α1, . . . , αn) : αi ∈ K}. We de�ne operation + : Kn ×Kn → Kn:

(α1, . . . , αn) + (β1, . . . , βn) = (α1 + β1, . . . , αn + βn).

We also de�ne multiplication of elements from Kn by elements of K:

α · (α1, . . . , αn) = (α · α1, . . . , α · αn).

Fact 92 Kn with the operations de�ned above is a linear space over K.

E.g. the space R2 may be identi�ed with the space of vectors in the place.
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2.3 Examples of linear spaces

Example 93 (a) A �eld K is a linear space over itself (this space is actually K1).

(b) The set of in�nite sequences over K (operations de�ned analogously to Kn).

(c) The set of polynomials over a �eld K, K[x], over K (naturally de�ned operations).

(d) The set of functions from R to R with the following operations: (f + g)(x) = f(x) + g(x), (αf)(x) =
α(f(x)) (this space is over the �eld R).

(e) The set of functions from X into a linear space V over K, with operations de�ned as above (this space
is over K).

2.4 Subspaces

De�nition 94 Let V be a linear space over a �eld K. We say that U is a subspace of V is U ⊆ V and U is
a linear space over K.

Example 95 (a) The set of polynomials of degree smaller than 10, over a �eld K is a subset of K[x].
(b) {(a, b, c) : a+ b+ c = 0} is a subset of R3.

Fact 96 A non-empty set S of vectors from V is a subspace of V if and only if it is closed under vector
addition and multiplication by scalars.

Fact 97 The intersection of two subspaces is a subspace.

2.5 Linear combinations of vectors

De�nition 98 Let V be a linear space over K. Let v1, . . . vk be vectors of V . A vector v = α1v1 + . . . αkvk,
(αi ∈ K) is called a linear combination of v1, . . . , vk with coe�cients α1, . . . , αk. Let A ⊆ V . By LIN(A)
we denote the set of all linear combinations of A. LIN(A) is called the subspace generated by A.

Fact 99 LIN(A) is a subspace of V . This is the smallest subspace containing A.

2.6 Linear independance

De�nition 100 A set of vectors v1, . . . , vk of a space V is linearly independent if α1v1 + . . . + αkvk = ~0
only if α1 = . . . = αk = 0. Vectors which are not linearly independent are called linearly dependent.

The de�nition implies that ~0 is not a member of any linearly independent set; every subset of a linarly
indepents set is linearly independend; any superset of linearly dependent set is linearly dependent.

Example 101 In R3:

(a) (1, 2, 3), (2, 3, 4), (6, 10, 14) are dependent,
(b) (1, 1, 1), (1, 1, 0), (1, 0, 0) are independent,

Lemma 102 A set of vectors v1, . . . , vk is linearly independent if and only if one of vectors is a linear
combination of the remaining.

Lemma 103 (i) The set of vectors v1, . . . , vk is linearly dependent if and only if it contains a proper
subset generating the same subspace

(ii) Any �nite set of vectors contains a linearly independent subset generating the same subspace.

2.7 Basis and dimension of a space

De�nition 104 A set of vectors B is a basis of a space V , if LIN(B) = V and B is linearly independent.
A space is �nitely-dimensional, if it has a �nite basis.

Example 105 (a) Bases in R3: (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1), (1, 1, 0), (1, 0, 0).
(b) A basis in Rn is (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1). This basis is called canonical or standard.

(c) A basis in R[x]: 1, x, x2, x3, . . ..

Fact 106 Let v1, . . . vl be linearly independent and for all i: vi ∈ LIN(e1, . . . ek). Then l ≤ k.
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Proof: Induction over l. 2

Corollary 107 Any set of more than n vectors in Kn is dependent

Proof: Kn = LIN((1, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)) 2

Corollary 108 If LIN(v1, . . . , vk) = LIN(u1, . . . , ul) and sets v1, . . . , vk and u1, . . . , ul are linearly inde-
pendent then k = l.

Corollary 109 All bases of a �nitely-dimensional space have the same number of elements.

De�nition 110 A dimension of a space V if the number of vectors in a basis of V .

Fact 111 (i) Every maximal linearly independent set of vectors of V is a basis of V .

(ii) Every n-element linearly independent set of vectors of a n-dimensional space is a basis of V .

(iii) Every set of linearly independent vectors of a �nitely-dimensional space may be extended to its basis.

Theorem 112 Every space of the form LIN(v1, . . . , vk) has a basis.

It can be shown that arbitrary space has a basis (we skip the proof of this fact).

Theorem 113 Every vector can be uniquely represented as a linear combination of vectors from a basis.

If e1, . . . , ek is a basis of V , v = α1e1 + . . .+ αkek, then coes�cients αi are called coordinates of v with
respect to the basis e1, . . . , ek.

2.8 Matrices

Formally, a matrix of dimensions m× n (a matrix with m rows and n columns), over a �eld K, is a fuction
of type {1, . . . ,m} × {1, . . . , n} → K. The set of matrices of dimensions m × n is denoted by Mmn(K) (or
Mmn, if the �eld is default). Matrices are usually represented as rectangular tables:

a1,1, a1,2, . . ., a1,n

a2,1, a2,2, . . ., a2,n

. . ., . . ., . . ., . . .
am,1, am,2, . . ., am,n

 ,
where aij is the value reterned by the function for the pair (i, j). Notions of rows and columns are de�ned
in a natural way.

Some special types of matrices are listed below:

(a) Zero matrix (of dimensions m× n) � consisting of zeros only.

(b) Square matrices, i.e. matrices with n rows and n columns (in this case n is called the degree of a
matrix):

• diagonal matrix: only elements on the main diagonal, i.e. a1,1, a2,2, . . . , an,n may not be equal to
zero.

• identity matrix: a diagonal matrix withs 1s on the main diagonal.

• upper triangular matrix: zeros below the main diagonal.

• lower triangular matrix: zeros above the main diagonal.

2.9 Operations on matrices

2.9.1 Addition of matrices, multiplication by scalars

In the set of matrices with m rows and n columns we can de�ne the operations of addition and multiplication
by scalars from K:


a1,1, a1,2, . . ., a1,n

a2,1, a2,2, . . ., a2,n

. . ., . . ., . . ., . . .
am,1, am,2, . . ., am,n

+


b1,1, b1,2, . . ., b1,n

b2,1, b2,2, . . ., b2,n

. . ., . . ., . . ., . . .
bm,1, bm,2, . . ., bm,n

 =


a1,1 + b1,1, a1,2 + b1,2, . . ., a1,n + b1,n

a2,1 + b2,1, a2,2 + b2,2, . . ., a2,n + b2,n

. . ., . . ., . . ., . . .
am,1 + bm,1, am,2 + bm,2, . . ., am,n + bm,n


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α ·


a1,1, a1,2, . . ., a1,n

a2,1, a2,2, . . ., a2,n

. . ., . . ., . . ., . . .
am,1, am,2, . . ., am,n

 =


αa1,1, αa1,2, . . ., αa1,n

αa2,1, αa2,2, . . ., αa2,n

. . ., . . ., . . ., . . .
αam,1, αam,2, . . ., αam,n


Example 114 Some examples of addition and multiplication by scalars.

The proof of the fact below is routine:

Fact 115 The set of matrices with m rows and n columns with the operations de�ned above is a linear space
of dimension mn.

Proof: Observe that Mmn with addition is a group. Check eg. that α(A+B) = αA+ αB.

2.9.2 Multiplication

A product of matrices A and B is de�ned only if the number of columns of A equals number of rows of B.
Firstly, we de�ne the product of a matrix of dimensions 1× n by a matrix of dimensions n× 1:

[a1, a2, . . . , an] ·


b1
b2
. . .
bn

 = [a1b1 + a2b2 + . . .+ anbn].

The result may be treated either as an element of the �eld K or a matrix over K of dimensions 1 × 1.
Now we de�ne the product of A and B, of dimensions m× n and n× k, respectively. The result is a matrix
of dimensions n× k. Let

A =


A1

A2

. . .
Am

 ,
where Ai are rows of A, and

B = [B1, B2, . . . Bk],

Bi are columns of B. AB is de�ned as follows:

AB =


A1B1, A1B2, . . ., A1Bk

A2B1, A2B2, . . ., A2Bk

. . ., . . ., . . ., . . .
AmB1, AmB2, . . ., AmBk


Matrix multiplication is not commutative (even for square matrices), but

Fact 116 Matrix multiplication is associative.

Fact 117 Let A,B,C be matrices over K, In � the identity matrix of degree n, and α ∈ K. If the following
operations are de�ned then:

(i) InA = A, AIn = A,

(ii) A(B + C) = AB +AC,

(iii) (B + C)A = BA+ CA,

(iv) α(AB) = (αA)B = A(αB).

Note, that multiplication is an operation in the set of square matireces of a �xed degree n. This operation
is associative and has the identity In. ButMnn with multiplication is not a group � there are matrices which
do not have inverses (e.g. zero matrix).
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2.10 Linear transformations

As in the case of groups and other algebraic structures, we can de�ne a notion of homomorphism of linear
spaces. Homomorphisms of linear spaces are called linear transformations.

De�nition 118 Let V and U be linear spacec over �eld K. A function J : V → U is called a linear
transformation if:

(a) ∀v1, v2 ∈ V we have L(v1 + v2) = L(v1) + L(v2)
(b) ∀α ∈ K, v ∈ V we have L(αv) = αL(v).

Example 119 Consider a map from R3 → R2, de�ned as L(x, y, z) = (x, y). It is linear.

The notions of the kernel and the image of a linear transformation are de�ned analogously to the case
groups. Ker(L) = {v ∈ V : L(v) = ~0}, Im(L) = {L(v) : v ∈ V }.

Lemma 120 If V and U are linear spaces over K, and L : V → U is a linear transformation, then Ker(L)
is a subspace of V , and Im(L) is a subspace of U .

Fact 121 The image of a linear subspace is a subspace and the inverse image of a linear subspace is a linear
subspace.

Example 122 (a) A function returning always the zero vector is a linear transformation.

(b) Function: L : R3 → R2, L((x, y, z)) = (x + y, z) is a linear. The kernel consist of vectors of the form
(x,−x, 0); and the image is the whole R2.

(c) L(x, y, z) = (x, x) is linear.
(d) Function L : R3 → R2, L((x, y, z)) = (xy, z) is not linear.

Theorem 123 dim(V ) = dim(im(L)) + dim(Ker(L)).

dim(Im(L)) is sometimes also called the rank of a transformation.

Example 124 Check that the theorem holds for L(a, b, c, d) = (a, 0, 0, b).

The composition of linear transformations is a linear transformation:

Fact 125 Let L be a linear transformation of V into U , and M a linear transformation of U into W . Then
the composition of L and M , (ML)(v) = M(L(v)) is a linear transformation of V into W .

2.11 A connection between matrices and linear spaces

Lemma 126 Let V and U be linear space over a �eld K. Let e1, . . . , en be a basis of V . Let w1, . . . , wn be
a sequence of vectors in U . Then there exists exactly one linear transformation which maps ei into fi for all
i.

Proof: L(v) = L(α1e1 + . . .+ αnen) = α1L(e1) + . . .+ αnL(en). 2

Let V and U be linear space over a �eld K. Let E = {e1, . . . , en} be a basis of V , and F = {f1, . . . , fm}
be a basis of U . Let L : V → U be a linear transformation. The image of every ei is a linear transformation
of vectors fi:

L(ei) = α1if1 + . . .+ αmifm.

We associate the following matrix with a linear transformation L : V → U . The matrix will be denoted
as AEF (L):

AEF (L) =


α1,1, α1,2, . . ., α1,n

α2,1, α2,2, . . ., α2,n

. . ., . . ., . . ., . . .
αm,1, αm,2, . . ., αm,n


AEFL is called the matrix of L in bases E, F . Note that the i-th column is the vector from Kn whose

coordinates are coe�cients of the image of ei given in the basis F .
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Example 127 We construct the matrix of L : R3 → R2, L((x, y, z)) = (x+ y, z) in standard bases:[
1 1 0
0 0 1

]
In the remaining part of this section we consider only linear transformations from Rn to Rm and matrices

in standard bases. However all the results can be generalized to arbitrary spaces and bases.

Theorem 128 There exists a natural bijective correspondence between the set of linear transformation form
Rn to Rm and the set of matrices Mm×n.

Fact 129 Let A(L) be the matrix of L. Then

A(L) ·


β1

β2

. . .
βn

 =


γ1

γ2

. . .

. . .
γm

 ,
where γ1, . . . , γm are coordinates of L(v) ∈ U .

Theorem 130 The matrix of the composition of linear transformations L and M is the product of matrices
A(L) and A(M).

Example 131 Consider the transformatoin L : R2 → R2 rotating the input vector about ϕ (we identify
vectors with points of the plane. The matrix A(L) is given below.[

cosϕ −sinϕ
sinϕ cosϕ

]
Consider also the rotation about ψ and the composition of these two rotations, ie. the rotation about

ϕ+ ψ. According to fact 130 the matrix of the composition can be computed as follows:[
cosψ −sinψ
sinψ cosψ

]
·
[
cosϕ −sinϕ
sinϕ cosϕ

]
Multiplying the matrices we obtain well known formulas:[

cos(ψ + ϕ) −sin(ψ + ϕ)
sin(ψ + ϕ) cos(ψ + ϕ)

]
=
[
cosψ cosϕ− sinψ sinϕ, −cosψ sinϕ− sinψ cosϕ
sinψ cosϕ+ cosψ sinϕ, −sinψ sinϕ+ cosψ cosϕ

]

2.12 Determinants

2.12.1 De�nition

Determinants of degree 2 should be known from school:∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

This can be generalized.

De�nition 132 Let A be a square matrix of degree n:

A =


a1,1, a1,2, . . ., a1,n

a2,1, a2,2, . . ., a2,n

. . ., . . ., . . ., . . .
an,1, an,2, . . ., an,n


The determinant of A (|A| or detA) is de�ned as:∑

f∈Sn

sgn(f)a1,f(1)a2,f(2) . . . a3,f(3),
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2.12.2 Properties

De�nition 133 The transpsition of a matrix A is the matrix AT whose rows are columns of A. Formally,
the element on the position i, j in AT is the elements from the position j, i in A.

Fact 134 |A| = |AT |.

Fact 135 If B is obtained from A by multiplying one the rows by α, then |B| = α|A|.

Fact 136 If B is obtained from A by switching two rows then |B| = −|A|.

Fact 137 A determinant with two identical rows is equal to 0.

Fact 138 If B is obtained from A by adding to a row some other row multiplied by a scalar then |B| = A|.

2.12.3 Laplace expansion

For a square matrix A we denote byMij the determinant of the matrix which is obtained from A by remowing
the i-th row and j − th column. We de�ne also Aij := (−1)i+jMij .

Fact 139 For every i:
detA = ai1Ai1 + ai2Ai2 + . . . ainAin

and
detA = a1iA1i + a2iA2i + . . . aniAni
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