You do not have permission to edit this page, for the following reason:

The action you have requested is limited to users in one of the groups: Users, Administrators.


You can view and copy the source of this page.

Return to GATE2010 q28.

The degree sequence of a simple graph is the sequence of the degrees of the nodes in the graph in decreasing order. Which of the following sequences can not be the degree sequence of any graph?

I. $7, 6, 5, 4, 4, 3, 2, 1$

II. $6, 6, 6, 6, 3, 3, 2, 2$

III. $7, 6, 6, 4, 4, 3, 2, 2$

IV. $8, 7, 7, 6, 4, 2, 1, 1$


(A) I and II

(B) III and IV

(C) IV only

(D) II and IV

Solution by Happy Mittal[edit]

This can be solved using havel hakimi theorem, which says :

  1. First arrange degree sequence in decreasing order.
  2. Remove $1^{st}$ vertex, and let its degree be $k$, then subtract $1$ from next $k$ vertices.
  3. If all vertices have degree $0$, then answer is yes i.e. given degree sequence can be a degree sequence for a graph. If any vertex has degree < $0$, then answer is no, otherwise repeat step 2.

So, we check each degree sequence given in question :

  1. $7, 6, 5, 4, 4, 3, 2, 1$. Here first vertex has degree $7$, so remove this first vertex, and then subtract $1$ from next $7$ vertices, so we get $5,4,3,3,2,1,0$. Then we get $3,2,2,1,0,0$ then $1,1,0,0,0$ and then $0,0,0,0$. So, answer is yes.

Since (I) comes only in one option i.e. option (A), it is correct answer. We don't need to check for other sequences.




blog comments powered by Disqus