You do not have permission to edit this page, for the following reason:
You can view and copy the source of this page.
Templates used on this page:
Return to GATE2009 q25.
$\int^{\pi/4}_0 (1-tanx)/(1+tanx)\,dx $
(A) 0
(B) 1
(C) ln 2
(D) 1/2ln 2
We know that $(1-\tan x)/(1+\tan x) = \tan(\pi;/4 - x)$, so $$\int^{\pi/4}_0 (1-tanx)/(1+tanx)\,dx = \int^{\pi/4}_0 tan(π/4 - x)\,dx = -\left[\ln \sec(\pi/4 - x)\right]^{\pi/4}_0 = 1/2 \ln 2$$ So option (D) is correct.