(Created page with "Let <math>G{e,a,b,c}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are: (A)2,2,3 (B)3,3,3 (C)2,2,4 (D)2,3,4 ...")
 
Line 10: Line 10:
  
 
===Solution===
 
===Solution===
 +
 +
{| class="wikitable" style="text-align: center;background-color: #ffffff;" width="35%"
 +
 +
!e
 +
!a
 +
!b
 +
!c
 +
|-
 +
!e
 +
|e|a|b|c
 +
|-
 +
!a
 +
|a|e|b|b
 +
}
 
_____________________
 
_____________________
 
|___|_e_|_a_|_b_|_c_|
 
|___|_e_|_a_|_b_|_c_|

Revision as of 21:38, 9 December 2013

Let <math>G{e,a,b,c}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are:

(A)2,2,3

(B)3,3,3

(C)2,2,4

(D)2,3,4

Solution

e a b c
e a|b|c
a e|b|b

} _____________________

_e_|_a_|_b_|_c_| _e_|_a_|_b_|_c_| _a_|_e_|_b_|_b_| _b_|_c_|_e_|_e_| _c_|_b_|_e_|_a_|

Let <math>G{e,a,b,c}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are:

(A)2,2,3

(B)3,3,3

(C)2,2,4

(D)2,3,4

Solution[edit]

_____________________ |___|_e_|_a_|_b_|_c_| |_e_|_e_|_a_|_b_|_c_| |_a_|_a_|_e_|_b_|_b_| |_b_|_b_|_c_|_e_|_e_| |_c_|_c_|_b_|_e_|_a_|