Line 13: Line 13:
 
{| class="wikitable" style="text-align: center;background-color: #ffffff;" width="35%"
 
{| class="wikitable" style="text-align: center;background-color: #ffffff;" width="35%"
 
   
 
   
 +
!e
 
!e
 
!e
 
!a
 
!a
Line 29: Line 30:
 
|b
 
|b
 
|b
 
|b
 +
!b
 +
|b
 +
|c
 +
|e
 +
|e
 +
|-
 +
!c
 +
|c
 +
|b
 +
|e
 +
|a
 
|}
 
|}
 
_____________________
 
_____________________

Revision as of 21:40, 9 December 2013

Let <math>G{e,a,b,c}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are:

(A)2,2,3

(B)3,3,3

(C)2,2,4

(D)2,3,4

Solution

e e a b c
e e a b c
a a e b b b b c e e
c c b e a

_____________________ |___|_e_|_a_|_b_|_c_| |_e_|_e_|_a_|_b_|_c_| |_a_|_a_|_e_|_b_|_b_| |_b_|_b_|_c_|_e_|_e_| |_c_|_c_|_b_|_e_|_a_|

Let <math>G{e,a,b,c}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are:

(A)2,2,3

(B)3,3,3

(C)2,2,4

(D)2,3,4

Solution[edit]

e a b c
e e a b c
a a e b b

_____________________ |___|_e_|_a_|_b_|_c_| |_e_|_e_|_a_|_b_|_c_| |_a_|_a_|_e_|_b_|_b_| |_b_|_b_|_c_|_e_|_e_| |_c_|_c_|_b_|_e_|_a_|