Line 7: Line 7:
 
(C)2,2,4  
 
(C)2,2,4  
  
'''(D)2,3,4'''
+
'''(D)2,4,4'''
  
 
===Solution===
 
===Solution===
Line 44: Line 44:
 
|}
 
|}
  
a and b have order 2(a * a = e and b * b = e). c has order 4 (since c * c = a and a * a = e)
+
a * a = e => order(a) = 2
 +
b * b * b * b = a * b * b = c * b = e => order(b) = 4
 +
c * c * c * c = a * c * c = b * c = e => order(c) = 4
  
 
<div class="fb-like"  data-layout="standard" data-action="like"  data-share="true"></div>
 
<div class="fb-like"  data-layout="standard" data-action="like"  data-share="true"></div>

Revision as of 22:26, 9 December 2013

Let <math>G\{e,a,b,c\}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are:

(A)2,2,3

(B)3,3,3

(C)2,2,4

(D)2,4,4

Solution

* e a b c
e e a b c
a a e c b
b b c a e
c c b e a
a * a = e => order(a) = 2
b * b * b * b = a * b * b = c * b = e => order(b) = 4
c * c * c * c = a * c * c = b * c = e => order(c) = 4



blog comments powered by Disqus

Let <math>G\{e,a,b,c\}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are:

(A)2,2,3

(B)3,3,3

(C)2,2,4

(D)2,3,4

Solution[edit]

* e a b c
e e a b c
a a e c b
b b c a e
c c b e a

a and b have order 2(a * a = e and b * b = e). c has order 4 (since c * c = a and a * a = e)



blog comments powered by Disqus