Arjun Suresh (talk | contribs) |
Arjun Suresh (talk | contribs) |
||
Line 29: | Line 29: | ||
$P$(exceeds $3$) = $P$(even and exceeds $3$)/$P$(even|exceeds $3$) | $P$(exceeds $3$) = $P$(even and exceeds $3$)/$P$(even|exceeds $3$) | ||
− | $= (P(4) + P(6))/0.75 = (20/57)/0.75 = 0.468$ | + | $= (P(4) + P(6))/0.75 $ |
+ | |||
+ | $= (20/57)/0.75 = 0.468$ | ||
So option <b>(B)</b> is correct. | So option <b>(B)</b> is correct. |
An unbalanced dice (with $6$ faces, numbered from $1$ to $6$) is thrown. The probability that the face value is odd is $90\%$ of the probability that the face value is even. The probability of getting any even numbered face is the same. If the probability that the face is even given that it is greater than $3$ is $0.75$, which one of the following options is closest to the probability that the face value exceeds $3$?
(A) 0.453
(B) 0.468
(C) 0.485
(D) 0.492
Let $P(even) = x$, so $P(odd) = 90\%$ of $x$
$= 9x/10$,
But $P(even) + P(odd) = 1$,
so $x + 9x/10 = 1$, $x = 10/19$
$=P(even)$
Since probability of any even number is same,
$P(2) = P(4) = P(6) = 10/(19*3) = 10/57$
Now $P$(even and exceeds $3$) = $P$(exceeds $3$) * $P$(even|exceeds $3$). So
$P$(exceeds $3$) = $P$(even and exceeds $3$)/$P$(even|exceeds $3$)
$= (P(4) + P(6))/0.75 $
$= (20/57)/0.75 = 0.468$
So option (B) is correct.
This work is licensed under the CC By-SA 3.0 , without all the cruft that would otherwise be put at the bottom of the page.
Sister Sites: GATE CSE Wiki, GATE CSE, Aptitude Overflow