Arjun Suresh (talk | contribs) |
Arjun Suresh (talk | contribs) (→Note) |
||
(44 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{alert|Please don't byheart this table. This is just to check your understanding |alert-danger}} | ||
+ | |||
:{| class="wikitable" | :{| class="wikitable" | ||
|+ align="top"|Grammar: Decidable and Undecidable Problems | |+ align="top"|Grammar: Decidable and Undecidable Problems | ||
|- | |- | ||
! Grammar | ! Grammar | ||
− | ! <math>w \in L( | + | ! <math>w \in L(G)</math> |
− | ! <math>L( | + | ! <math>L(G) = \phi</math> |
− | ! <math>L = \Sigma^*</math> | + | ! <math>L(G) = \Sigma^*</math> |
− | ! <math>L( | + | ! <math>L(G_1) \subseteq L(G_2)</math> |
− | ! <math>L( | + | ! <math>L(G_1) = L(G_2)</math> |
− | ! <math>L( | + | ! <math>L(G_1) \cap L(G_2) = \phi</math> |
+ | ! <math>L(G)</math> is regular? | ||
+ | ! $L(G)$ is finite? | ||
|- | |- | ||
− | | | + | |Regular Grammar |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{D}} |
+ | | {{D}} | ||
+ | | {{D}} | ||
|- | |- | ||
− | | | + | |Det. Context Free |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{UD}} |
+ | | {{D}} | ||
+ | | {{D}} | ||
|- | |- | ||
− | | | + | |Context Free |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
+ | | {{UD}} | ||
+ | | {{D}} | ||
|- | |- | ||
− | | | + | |Context Sensitive |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
+ | | {{UD}} | ||
+ | | {{UD}} | ||
|- | |- | ||
− | | | + | |Recursive |
− | | {{ | + | | {{D}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | | {{ | + | | {{UD}} |
− | + | | {{UD}} | |
− | + | | {{UD}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | {{ | ||
− | | {{ | ||
|- | |- | ||
+ | |Recursively Enumerable | ||
+ | | {{UD}} | ||
+ | | {{UD}} | ||
+ | | {{UD}} | ||
+ | | {{UD}} | ||
+ | | {{UD}} | ||
+ | | {{UD}} | ||
+ | | {{UD}} | ||
+ | | {{UD}} | ||
|} | |} | ||
+ | |||
+ | Checking if <math>L(CFG)</math> is finite is decidable because we just need to see if <math>L(CFG)</math> contains any string with length between <math>n</math> and <math>2n-1</math>, where <math>n</math> is the pumping lemma constant. If so, <math>L(CFG)</math> is infinite otherwise its finite. | ||
+ | |||
+ | ==Other Undecidable Problems == | ||
+ | [http://www.cis.upenn.edu/~jean/gbooks/PCPh04.pdf Proofs] | ||
+ | ===For arbitrary CFGs <math>G</math>, <math>G_1</math> and <math>G_2</math> and an arbitrary regular expression <math>R</math>=== | ||
+ | The following problems are '''undecidable''': | ||
+ | |||
+ | # Whether <math>(L(G_1))^\complement</math> is a CFL? | ||
+ | # Whether <math>L(G_1) \cap L(G2)</math> is a CFL? (undecidable for DCFG also) | ||
+ | # Whether <math>L(G_1) \cap L(G2)</math> is empty? (undecidable for DCFG also) | ||
+ | # Whether <math>L(G) = L(R)</math>? | ||
+ | # Whether <math>L(R) \subseteq L(G)</math>? | ||
+ | # Whether <math>G</math> is ambiguous? | ||
+ | # Whether <math>L(G)</math> is a DCFL? | ||
+ | # Whether <math>L(G)</math> is a regular language? | ||
+ | |||
+ | But whether <math>L(G) \subseteq L(R)</math> is decidable. (We can test if <math>L(G) \cap compl(L(R))</math> is <math>\phi</math>) | ||
+ | |||
+ | ===For arbitrary DCFGs <math>G</math>, <math>G_1</math> and <math>G_2</math> and an arbitrary regular expression <math>R</math>=== | ||
+ | The following problems are '''decidable''': | ||
+ | |||
+ | # Whether <math>(L(G_1))^\complement</math> is a DCFL? (trivial) | ||
+ | # Whether <math>L(G) = L(R)</math>? | ||
+ | # Whether <math>L(G) \subseteq (R)</math>? | ||
+ | # Whether <math>L(R) \subseteq L(G)</math>? | ||
+ | # Whether <math>L(G)</math> is a CFL? (trivial) | ||
+ | |||
+ | |||
+ | |||
+ | {{Template:FBD}} | ||
+ | |||
+ | [[Category: Automata Theory Notes]] | ||
+ | |||
+ | [[Category: Compact Notes for Reference of Understanding]] |
Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G)</math> is regular? | $L(G)$ is finite? |
---|---|---|---|---|---|---|---|---|
Regular Grammar | D | D | D | D | D | D | D | D |
Det. Context Free | D | D | D | UD | D | UD | D | D |
Context Free | D | D | UD | UD | UD | UD | UD | D |
Context Sensitive | D | UD | UD | UD | UD | UD | UD | UD |
Recursive | D | UD | UD | UD | UD | UD | UD | UD |
Recursively Enumerable | UD | UD | UD | UD | UD | UD | UD | UD |
Checking if <math>L(CFG)</math> is finite is decidable because we just need to see if <math>L(CFG)</math> contains any string with length between <math>n</math> and <math>2n-1</math>, where <math>n</math> is the pumping lemma constant. If so, <math>L(CFG)</math> is infinite otherwise its finite.
The following problems are undecidable:
But whether <math>L(G) \subseteq L(R)</math> is decidable. (We can test if <math>L(G) \cap compl(L(R))</math> is <math>\phi</math>)
The following problems are decidable:
Grammar | <math>w \in L(M)</math> | <math>L(M) = \phi</math> | <math>L = \Sigma^*</math> | <math>L(M_1) \subseteq L(M_2)</math> | <math>L(M_1) = L(M_2)</math> | <math>L(M_1) \cap L(M_2) = \phi</math> |
---|---|---|---|---|---|---|
Union | Yes | No | Yes | Yes | Yes | Yes |
Intersection | Yes | No | No | Yes | Yes | Yes |
Complement | Yes | Yes | No | Yes | Yes | No |
Concatenation | Yes | No | Yes | Yes | Yes | Yes |
Kleene star | Yes | No | Yes | Yes | Yes | Yes |
Homomorphism | Yes | No | Yes | No | No | Yes |
<math>\epsilon</math>-free Homomorphism | Yes | No | Yes | Yes | Yes | Yes |
Substitution (<math>\epsilon</math>-free) | Yes | No | Yes | Yes | No | Yes |
Inverse Homomorphism | Yes | Yes | Yes | Yes | Yes | Yes |
Reverse | Yes | No | Yes | Yes | Yes | Yes |