Arjun Suresh (talk | contribs) |
Arjun Suresh (talk | contribs) (→Note) |
||
| (27 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{alert|Please don't byheart this table. This is just to check your understanding |alert-danger}} | ||
| + | |||
:{| class="wikitable" | :{| class="wikitable" | ||
|+ align="top"|Grammar: Decidable and Undecidable Problems | |+ align="top"|Grammar: Decidable and Undecidable Problems | ||
| Line 9: | Line 11: | ||
! <math>L(G_1) = L(G_2)</math> | ! <math>L(G_1) = L(G_2)</math> | ||
! <math>L(G_1) \cap L(G_2) = \phi</math> | ! <math>L(G_1) \cap L(G_2) = \phi</math> | ||
| − | ! <math>L(G)</math> is finite | + | ! <math>L(G)</math> is regular? |
| + | ! $L(G)$ is finite? | ||
|- | |- | ||
|Regular Grammar | |Regular Grammar | ||
| + | | {{D}} | ||
| {{D}} | | {{D}} | ||
| {{D}} | | {{D}} | ||
| Line 25: | Line 29: | ||
| {{D}} | | {{D}} | ||
| {{UD}} | | {{UD}} | ||
| − | | {{ | + | | {{D}} |
| {{UD}} | | {{UD}} | ||
| + | | {{D}} | ||
| {{D}} | | {{D}} | ||
|- | |- | ||
| Line 32: | Line 37: | ||
| {{D}} | | {{D}} | ||
| {{D}} | | {{D}} | ||
| + | | {{UD}} | ||
| {{UD}} | | {{UD}} | ||
| {{UD}} | | {{UD}} | ||
| Line 40: | Line 46: | ||
|Context Sensitive | |Context Sensitive | ||
| {{D}} | | {{D}} | ||
| + | | {{UD}} | ||
| {{UD}} | | {{UD}} | ||
| {{UD}} | | {{UD}} | ||
| Line 49: | Line 56: | ||
|Recursive | |Recursive | ||
| {{D}} | | {{D}} | ||
| + | | {{UD}} | ||
| {{UD}} | | {{UD}} | ||
| {{UD}} | | {{UD}} | ||
| Line 57: | Line 65: | ||
|- | |- | ||
|Recursively Enumerable | |Recursively Enumerable | ||
| − | | {{ | + | | {{UD}} |
| + | | {{UD}} | ||
| {{UD}} | | {{UD}} | ||
| {{UD}} | | {{UD}} | ||
| Line 66: | Line 75: | ||
|} | |} | ||
| + | Checking if <math>L(CFG)</math> is finite is decidable because we just need to see if <math>L(CFG)</math> contains any string with length between <math>n</math> and <math>2n-1</math>, where <math>n</math> is the pumping lemma constant. If so, <math>L(CFG)</math> is infinite otherwise its finite. | ||
==Other Undecidable Problems == | ==Other Undecidable Problems == | ||
| + | [http://www.cis.upenn.edu/~jean/gbooks/PCPh04.pdf Proofs] | ||
| + | ===For arbitrary CFGs <math>G</math>, <math>G_1</math> and <math>G_2</math> and an arbitrary regular expression <math>R</math>=== | ||
| + | The following problems are '''undecidable''': | ||
| + | |||
| + | # Whether <math>(L(G_1))^\complement</math> is a CFL? | ||
| + | # Whether <math>L(G_1) \cap L(G2)</math> is a CFL? (undecidable for DCFG also) | ||
| + | # Whether <math>L(G_1) \cap L(G2)</math> is empty? (undecidable for DCFG also) | ||
| + | # Whether <math>L(G) = L(R)</math>? | ||
| + | # Whether <math>L(R) \subseteq L(G)</math>? | ||
| + | # Whether <math>G</math> is ambiguous? | ||
| + | # Whether <math>L(G)</math> is a DCFL? | ||
| + | # Whether <math>L(G)</math> is a regular language? | ||
| + | |||
| + | But whether <math>L(G) \subseteq L(R)</math> is decidable. (We can test if <math>L(G) \cap compl(L(R))</math> is <math>\phi</math>) | ||
| + | |||
| + | ===For arbitrary DCFGs <math>G</math>, <math>G_1</math> and <math>G_2</math> and an arbitrary regular expression <math>R</math>=== | ||
| + | The following problems are '''decidable''': | ||
| − | = | + | # Whether <math>(L(G_1))^\complement</math> is a DCFL? (trivial) |
| − | + | # Whether <math>L(G) = L(R)</math>? | |
| + | # Whether <math>L(G) \subseteq (R)</math>? | ||
| + | # Whether <math>L(R) \subseteq L(G)</math>? | ||
| + | # Whether <math>L(G)</math> is a CFL? (trivial) | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {{Template:FBD}} | |
| − | |||
| − | + | [[Category: Automata Theory Notes]] | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | [[Category: Compact Notes for Reference of Understanding]] | |
| Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G)</math> is regular? | $L(G)$ is finite? |
|---|---|---|---|---|---|---|---|---|
| Regular Grammar | D | D | D | D | D | D | D | D |
| Det. Context Free | D | D | D | UD | D | UD | D | D |
| Context Free | D | D | UD | UD | UD | UD | UD | D |
| Context Sensitive | D | UD | UD | UD | UD | UD | UD | UD |
| Recursive | D | UD | UD | UD | UD | UD | UD | UD |
| Recursively Enumerable | UD | UD | UD | UD | UD | UD | UD | UD |
Checking if <math>L(CFG)</math> is finite is decidable because we just need to see if <math>L(CFG)</math> contains any string with length between <math>n</math> and <math>2n-1</math>, where <math>n</math> is the pumping lemma constant. If so, <math>L(CFG)</math> is infinite otherwise its finite.
The following problems are undecidable:
But whether <math>L(G) \subseteq L(R)</math> is decidable. (We can test if <math>L(G) \cap compl(L(R))</math> is <math>\phi</math>)
The following problems are decidable:
| Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G)</math> is finite |
|---|---|---|---|---|---|---|---|
| Regular Grammar | D | D | D | D | D | D | D |
| Det. Context Free | D | D | D | UD | ? | UD | D |
| Context Free | D | D | UD | UD | UD | UD | D |
| Context Sensitive | D | UD | UD | UD | UD | UD | UD |
| Recursive | D | UD | UD | UD | UD | UD | UD |
| Recursively Enumerable | D | UD | UD | UD | UD | UD | UD |
The following problems are undecidable:
But whether <math>R \subseteq L(G)</math> is decidable
The following problems are decidable:
Whether <math>R \subseteq L(G)</math> is decidable