(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
Suppose <math>p</math> is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and <math>p</math> has a Poisson distribution with mean 3. What is the probability of observing fewer than 3 cars during any given minute in this interval?
+
Suppose <math>p</math> is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and <math>p</math> has a Poisson distribution with mean $3$. What is the probability of observing fewer than 3 cars during any given minute in this interval?
  
 
(A) $8/(2e^{3})$
 
(A) $8/(2e^{3})$
  
'''(B) $9/(2e^{3})$'''
+
(B) $9/(2e^{3})$
  
(C) $17/(2e^{3})$
+
'''(C) $17/(2e^{3})$'''
  
 
(D) $26/(2e^{3})$
 
(D) $26/(2e^{3})$
  
$\lamda$
+
==={{Template:Author|Arjun Suresh|{{arjunweb}} }}===
 +
Poisson Probability Density Function (with mean $\lambda$) = $\lambda^{k} / (e^{\lambda}k!)$,
  
<div class="fb-like"  data-layout="standard" data-action="like" data-show-faces="true" data-share="true"></div>
+
We have to sum the probability density function for $k = 0,1$ and $2$ and $\lambda$ = 3 (thus finding the cumulative mass function)
  
 +
=$(1/e^3) + (3/e^3) + (9/2e^3)$
  
<div class="fb-share-button"  data-type="button_count"></div>
+
=$17/(2e^{3})$
  
  
 +
{{Template:FBD}}
  
<disqus/>
 
  
  
 
[[Category: GATE2013]]
 
[[Category: GATE2013]]
 +
[[Category: Probability questions from GATE]]

Latest revision as of 11:53, 15 July 2014

Suppose <math>p</math> is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and <math>p</math> has a Poisson distribution with mean $3$. What is the probability of observing fewer than 3 cars during any given minute in this interval?

(A) $8/(2e^{3})$

(B) $9/(2e^{3})$

(C) $17/(2e^{3})$

(D) $26/(2e^{3})$

Solution by Arjun Suresh

Poisson Probability Density Function (with mean $\lambda$) = $\lambda^{k} / (e^{\lambda}k!)$,

We have to sum the probability density function for $k = 0,1$ and $2$ and $\lambda$ = 3 (thus finding the cumulative mass function)

=$(1/e^3) + (3/e^3) + (9/2e^3)$

=$17/(2e^{3})$




blog comments powered by Disqus

Suppose <math>p</math> is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and <math>p</math> has a Poisson distribution with mean 3. What is the probability of observing fewer than 3 cars during any given minute in this interval?

(A) $8/(2e^{3})$

(B) $9/(2e^{3})$

(C) $17/(2e^{3})$

(D) $26/(2e^{3})$

$\lamda$



blog comments powered by Disqus