Arjun Suresh (talk | contribs) |
Arjun Suresh (talk | contribs) |
||
(20 intermediate revisions by the same user not shown) | |||
Line 18: | Line 18: | ||
==={{Template:Author|Arjun Suresh|{{arjunweb}} }}=== | ==={{Template:Author|Arjun Suresh|{{arjunweb}} }}=== | ||
+ | A key to the solution is that we can continue pressing CTRL-V multiple times and the characters in the buffer will get printed continuously. The recurrence relation for the solution is | ||
+ | |||
+ | sol[n] = max(2 * sol[n-3], 3 * sol[n-4], 4 * sol[n-5]) | n > 6 | ||
+ | and | ||
+ | 1 for 1<= n <= 6 | ||
+ | |||
+ | The recurrence relation is drawn from the fact that, the optimal solution at position $n$ will be obtained by CTRL-A, CTRL-C, CTRL-V sequence starting at either $(n-3)^{th}$ position or $(n-4)^{th}$ position or $(n-5)^{th}$ position. We needn't consider solution at position $(n-6)$ because that is already considered while calculating the solution at position $(n-3)$ which we are considering. Each CTRL-V prints the same number of characters as was on the screen during which the previous CTRL-A was typed. So, if we take $sol[n-3]$, that would mean CTRL-A starting at $n-2$, CTRL-C at $n-1$ and CTRL-V at $n$. So, $sol[n-3]$ is doubled at $n$. If we take $sol[n-4]$, there will be CTRL-V at positions $n-1$ and $n$, and so $sol[n]$ becomes $3$ times $sol[n-4]$. Similarly, if we take $sol[n-5]$, there will be 3 CTRL-V at $n-2$, $n-1$ and $n$ and $sol[n]$ becomes 4 times $sol[n-5]$. | ||
<syntaxhighlight lang="c" name="printa"> | <syntaxhighlight lang="c" name="printa"> | ||
#include <stdio.h> | #include <stdio.h> | ||
+ | |||
+ | //Returns max of a,b,c | ||
+ | int max(int a, int b, int c) | ||
+ | { | ||
+ | return a > b ? a > c? a:c : b > c? b:c; | ||
+ | } | ||
+ | |||
+ | //Returns 1 if a = max(a,b,c), 2 if b = max(a,b,c) and 3 if c = max(a,b,c) | ||
+ | int maxp(int a, int b, int c) | ||
+ | { | ||
+ | return a > b ? a > c? 1:3 : b > c? 2:3; | ||
+ | } | ||
+ | |||
+ | void print(int *, int); | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | unsigned int n, i; | ||
+ | unsigned long long sol[1000]; | ||
+ | unsigned int prin[1000]; | ||
+ | printf("Enter N: "); | ||
+ | scanf("%u", &n); | ||
− | int | + | for(i = 1 ;n>5? i<=5: i<= n; i++) |
+ | { | ||
+ | sol[i] = i; | ||
+ | prin[i] = 0; | ||
+ | } | ||
+ | if(n >= 6) | ||
+ | { | ||
+ | sol[6] = 6; | ||
+ | prin[6] = 1; | ||
+ | } | ||
+ | for(i = 7; i <= n; i++) | ||
+ | { | ||
+ | sol[i] = max(2 * sol[i-3], 3 * sol[i-4], 4 * sol[i-5]); | ||
+ | prin[i] = maxp(2 * sol[i-3], 3 * sol[i-4], 4 * sol[i-5]); | ||
+ | } | ||
+ | printf("M = %llu\n", sol[n]); | ||
+ | printf("Enter any char to start printing the key sequence: \n"); | ||
+ | scanf("%d", &n); | ||
+ | printf("Printing the sequence: \n\n"); | ||
+ | print(prin, n); | ||
+ | } | ||
+ | |||
+ | void print(int * prin, int n) | ||
+ | { | ||
+ | if(n < 1) | ||
+ | return; | ||
+ | switch(prin[n]) | ||
+ | { | ||
+ | case 0: | ||
+ | print(prin, n-1); | ||
+ | printf("A\n"); | ||
+ | break; | ||
+ | case 1: | ||
+ | print(prin, n-3); | ||
+ | printf("CTRL-A\nCTRL-C\nCTRL-V\n"); | ||
+ | break; | ||
+ | case 2: | ||
+ | print(prin, n-4); | ||
+ | printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\n"); | ||
+ | break; | ||
+ | case 3: | ||
+ | print(prin, n-5); | ||
+ | printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\n"); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | </syntaxhighlight> | ||
+ | |||
+ | ===Alternate Solution=== | ||
+ | |||
+ | The above solution assumes that after CTRL-C, we can do a mouse click as otherwise CTRL-V will override whatever was selected on the screen. If mouse click is not allowed, recurrence relation should be modified as: | ||
+ | |||
+ | sol[n] = max(2 * sol[n-4], 3 * sol[n-5], 4 * sol[n-6], 5 * sol[n-7]) | n > 7 | ||
+ | and | ||
+ | 1 for 1<= n <= 7 | ||
+ | |||
+ | The code for this will be: | ||
+ | <syntaxhighlight lang="c" name="printa2"> | ||
+ | #include <stdio.h> | ||
+ | |||
+ | //Returns max of a,b,c,d | ||
+ | int max(int a, int b, int c, int d) | ||
+ | { | ||
+ | return a > b ? a > c? a > d ? a : d : c > d? c : d : b > c? b > d? b : d : c > d? c : d ; | ||
+ | } | ||
+ | |||
+ | |||
+ | //Returns 1 if a = max(a,b,c,d), 2 if b = max(a,b,c,d), 3 if c = max(a,b,c,d) and 4 if d = max(a,b,c,d) | ||
+ | int maxp(int a, int b, int c, int d) | ||
{ | { | ||
− | + | return a > b ? a > c? a > d ? 1 : 4 : c > d? 3 : 4 : b > c? b > d? 2 : 4 : c > d? 3 : 4; | |
− | + | } | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | void print(int *, int); | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | int main() | |
− | + | { | |
− | + | unsigned int n, i; | |
− | + | unsigned long long sol[1000]; | |
− | + | unsigned int prin[1000]; | |
+ | printf("Enter N: "); | ||
+ | scanf("%u", &n); | ||
− | + | for(i = 1 ;n>7? i<=7: i<= n; i++) | |
− | + | { | |
− | + | sol[i] = i; | |
− | + | prin[i] = 0; | |
− | + | } | |
− | + | ||
+ | for(i = 8; i <= n; i++) | ||
+ | { | ||
+ | sol[i] = max( 2 * sol[i-4], 3 * sol[i-5], 4 * sol [i-6], 5 * sol[i-7]); | ||
+ | prin[i] = maxp( 2 * sol[i-4], 3 * sol[i-5], 4 * sol [i-6], 5 * sol[i-7]); | ||
+ | } | ||
+ | printf("M = %llu\n", sol[n]); | ||
+ | printf("Enter any char to start printing the key sequence: \n"); | ||
+ | scanf("%d", &n); | ||
+ | printf("Printing the sequence: \n\n"); | ||
+ | print(prin, n); | ||
+ | } | ||
− | + | void print(int * prin, int n) | |
− | + | { | |
− | + | if(n < 1) | |
− | + | return; | |
+ | switch(prin[n]) | ||
+ | { | ||
+ | case 0: | ||
+ | print(prin, n-1); | ||
+ | printf("A\n"); | ||
+ | break; | ||
+ | case 1: | ||
+ | print(prin, n-4); | ||
+ | printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\n"); | ||
+ | break; | ||
+ | case 2: | ||
+ | print(prin, n-5); | ||
+ | printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\nCTRL-V\n"); | ||
+ | break; | ||
+ | case 3: | ||
+ | print(prin, n-6); | ||
+ | printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\nCTRL-V\nCTRL-V\n"); | ||
+ | break; | ||
+ | case 4: | ||
+ | print(prin, n-7); | ||
+ | printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\nCTRL-V\nCTRL-V\nCTRL-V\n"); | ||
+ | } | ||
} | } | ||
+ | |||
+ | |||
</syntaxhighlight> | </syntaxhighlight> | ||
Line 71: | Line 186: | ||
{{Template:FBD}} | {{Template:FBD}} | ||
− | [[Category:Coding Questions | + | [[Category:Placement Coding Questions from Arrays]] |
Imagine you have a special keyboard with the following keys:
A
Ctrl+A
Ctrl+C
Ctrl+V
where CTRL+A, CTRL+C, CTRL+V each acts as one function key for “Select All”, “Copy”, and “Paste” operations respectively.
If you can only press the keyboard for N times (with the above four keys), please write a program to produce maximum numbers of A. If possible, please also print out the sequence of keys. That is to say, the input parameter is N (No. of keys that you can press), the output is M (No. of As that you can produce).
A key to the solution is that we can continue pressing CTRL-V multiple times and the characters in the buffer will get printed continuously. The recurrence relation for the solution is
sol[n] = max(2 * sol[n-3], 3 * sol[n-4], 4 * sol[n-5]) | n > 6
and
1 for 1<= n <= 6
The recurrence relation is drawn from the fact that, the optimal solution at position $n$ will be obtained by CTRL-A, CTRL-C, CTRL-V sequence starting at either $(n-3)^{th}$ position or $(n-4)^{th}$ position or $(n-5)^{th}$ position. We needn't consider solution at position $(n-6)$ because that is already considered while calculating the solution at position $(n-3)$ which we are considering. Each CTRL-V prints the same number of characters as was on the screen during which the previous CTRL-A was typed. So, if we take $sol[n-3]$, that would mean CTRL-A starting at $n-2$, CTRL-C at $n-1$ and CTRL-V at $n$. So, $sol[n-3]$ is doubled at $n$. If we take $sol[n-4]$, there will be CTRL-V at positions $n-1$ and $n$, and so $sol[n]$ becomes $3$ times $sol[n-4]$. Similarly, if we take $sol[n-5]$, there will be 3 CTRL-V at $n-2$, $n-1$ and $n$ and $sol[n]$ becomes 4 times $sol[n-5]$.
<syntaxhighlight lang="c" name="printa">
//Returns max of a,b,c int max(int a, int b, int c) { return a > b ? a > c? a:c : b > c? b:c; }
//Returns 1 if a = max(a,b,c), 2 if b = max(a,b,c) and 3 if c = max(a,b,c) int maxp(int a, int b, int c) { return a > b ? a > c? 1:3 : b > c? 2:3; }
void print(int *, int);
int main() { unsigned int n, i; unsigned long long sol[1000]; unsigned int prin[1000]; printf("Enter N: "); scanf("%u", &n);
for(i = 1 ;n>5? i<=5: i<= n; i++) { sol[i] = i; prin[i] = 0; } if(n >= 6) { sol[6] = 6; prin[6] = 1; } for(i = 7; i <= n; i++) { sol[i] = max(2 * sol[i-3], 3 * sol[i-4], 4 * sol[i-5]); prin[i] = maxp(2 * sol[i-3], 3 * sol[i-4], 4 * sol[i-5]); } printf("M = %llu\n", sol[n]); printf("Enter any char to start printing the key sequence: \n"); scanf("%d", &n); printf("Printing the sequence: \n\n"); print(prin, n); }
void print(int * prin, int n) { if(n < 1) return; switch(prin[n]) { case 0: print(prin, n-1); printf("A\n"); break; case 1: print(prin, n-3); printf("CTRL-A\nCTRL-C\nCTRL-V\n"); break; case 2: print(prin, n-4); printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\n"); break; case 3: print(prin, n-5); printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\n"); } }
</syntaxhighlight>
The above solution assumes that after CTRL-C, we can do a mouse click as otherwise CTRL-V will override whatever was selected on the screen. If mouse click is not allowed, recurrence relation should be modified as:
sol[n] = max(2 * sol[n-4], 3 * sol[n-5], 4 * sol[n-6], 5 * sol[n-7]) | n > 7
and
1 for 1<= n <= 7
The code for this will be: <syntaxhighlight lang="c" name="printa2">
//Returns max of a,b,c,d int max(int a, int b, int c, int d) {
return a > b ? a > c? a > d ? a : d : c > d? c : d : b > c? b > d? b : d : c > d? c : d ;
}
//Returns 1 if a = max(a,b,c,d), 2 if b = max(a,b,c,d), 3 if c = max(a,b,c,d) and 4 if d = max(a,b,c,d)
int maxp(int a, int b, int c, int d)
{
return a > b ? a > c? a > d ? 1 : 4 : c > d? 3 : 4 : b > c? b > d? 2 : 4 : c > d? 3 : 4;
}
void print(int *, int);
int main() { unsigned int n, i; unsigned long long sol[1000]; unsigned int prin[1000]; printf("Enter N: "); scanf("%u", &n);
for(i = 1 ;n>7? i<=7: i<= n; i++) { sol[i] = i; prin[i] = 0; }
for(i = 8; i <= n; i++) { sol[i] = max( 2 * sol[i-4], 3 * sol[i-5], 4 * sol [i-6], 5 * sol[i-7]); prin[i] = maxp( 2 * sol[i-4], 3 * sol[i-5], 4 * sol [i-6], 5 * sol[i-7]); } printf("M = %llu\n", sol[n]); printf("Enter any char to start printing the key sequence: \n"); scanf("%d", &n); printf("Printing the sequence: \n\n"); print(prin, n); }
void print(int * prin, int n) { if(n < 1) return; switch(prin[n]) { case 0: print(prin, n-1); printf("A\n"); break; case 1: print(prin, n-4); printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\n"); break; case 2: print(prin, n-5); printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\nCTRL-V\n"); break; case 3: print(prin, n-6); printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\nCTRL-V\nCTRL-V\n");
break; case 4: print(prin, n-7);
printf("CTRL-A\nCTRL-C\nCTRL-V\nCTRL-V\nCTRL-V\nCTRL-V\nCTRL-V\n"); } }
</syntaxhighlight>
Imagine you have a special keyboard with the following keys:
A
Ctrl+A
Ctrl+C
Ctrl+V
where CTRL+A, CTRL+C, CTRL+V each acts as one function key for “Select All”, “Copy”, and “Paste” operations respectively.
If you can only press the keyboard for N times (with the above four keys), please write a program to produce maximum numbers of A. If possible, please also print out the sequence of keys. That is to say, the input parameter is N (No. of keys that you can press), the output is M (No. of As that you can produce).
<syntaxhighlight lang="c" name="printa">
int main() {
unsigned long N, M, i; printf("Enter N: "); scanf("%lu", &N); printf("\n\nKey Sequences:\n\n"); if(N <= 6) { M = 6; for(i = 0; i < N; i++) printf("A\n"); } else if (N % 3 == 0) { M = 3 * (1L<< (N-3)/3); //1<<x gives pow(2,x) and I'm too lazy to include math.h for(i = 0; i < 3; i++) printf("A\n"); for(i = 1; i < N/3; i++) { printf("\nCTRL+A\n"); printf("CTRL+C\n"); printf("CTRL+V\n\n"); } } else { M = 4 * (1L << (N-4)/3) + (N-4)%3; //1<<x gives pow(2,x) for(i = 0; i < 4; i++) printf("A\n"); for(i=0; i < (N-4)/3; i++) { printf("\nCTRL+A\n"); printf("CTRL+C\n"); printf("CTRL+V\n\n"); } for(i = 0; i < N%3; i++) printf("A\n"); } printf("\nM = %lu\n", M);
} </syntaxhighlight>