Arjun Suresh (talk | contribs) |
Arjun Suresh (talk | contribs) |
||
Line 23: | Line 23: | ||
[[Category: GATE2013]] | [[Category: GATE2013]] | ||
+ | [[Category: Some of the previous year GATE questions]] |
Suppose <math>p</math> is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and <math>p</math> has a Poisson distribution with mean 3. What is the probability of observing fewer than 3 cars during any given minute in this interval?
(A) $8/(2e^{3})$
(B) $9/(2e^{3})$
(C) $17/(2e^{3})$
(D) $26/(2e^{3})$
Poisson Probability Density Function (with mean $\lambda$) = $\lambda^{k} / (e^{\lambda}k!)$, We have to sum for k = 0,1 and 2 and $\lambda$ = 3
Suppose <math>p</math> is the number of cars per minute passing through a certain road junction between 5 PM and 6 PM, and <math>p</math> has a Poisson distribution with mean 3. What is the probability of observing fewer than 3 cars during any given minute in this interval?
(A) $8/(2e^{3})$
(B) $9/(2e^{3})$
(C) $17/(2e^{3})$
(D) $26/(2e^{3})$
Poisson Probability Density Function (with mean $\lambda$) = $\lambda^{k} / (e^{\lambda}k!)$, We have to sum for k = 0,1 and 2 and $\lambda$ = 3