Line 5: Line 5:
 
(B)3,3,3  
 
(B)3,3,3  
  
'''(C)2,2,4'''
+
(C)2,2,4  
  
(D)2,3,4
+
'''(D)2,3,4'''
  
 
===Solution===
 
===Solution===

Revision as of 22:00, 9 December 2013

Let <math>G\{e,a,b,c\}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are:

(A)2,2,3

(B)3,3,3

(C)2,2,4

(D)2,3,4

Solution

* e a b c
e e a b c
a a e b b
b b c e e
c c b e a

a and b have order 2(a * a = e and b * b = e). c has order 4 (since c * c = a and a * a = e)



blog comments powered by Disqus

Let <math>G\{e,a,b,c\}</math> be an abelian group with <math>'e'</math> as an identity element. The order of the other elements are:

(A)2,2,3

(B)3,3,3

(C)2,2,4

(D)2,3,4

Solution[edit]

* e a b c
e e a b c
a a e b b
b b c e e
c c b e a

a and b have order 2(a * a = e and b * b = e). c has order 4 (since c * c = a and a * a = e)



blog comments powered by Disqus