(Examples)
(Examples)
Line 43: Line 43:
 
(3) <math>L(M)</math> is regular
 
(3) <math>L(M)</math> is regular
  
We can have <math>T_{yes}</math> for <math>\phi</math> and  <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\phi \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> is regular <math>\}</math> is not Turing recognizable (not recursively enumerable)
+
We can have <math>T_{yes}</math> for <math>\phi</math> and  <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\phi \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> is regular<math>\}</math> is not Turing recognizable (not recursively enumerable)
  
 
(4) <math>L(M)</math> is not regular
 
(4) <math>L(M)</math> is not regular

Revision as of 01:11, 23 February 2014

Rice's Theorem

Reference

Part 1

Any non-trivial property about the language recognized by a Turing machine is undecidable

For a property to be non-trivial, there should exist at least two Turing machines, the property holding for the language of one (<math>T_{yes}</math>) and not holding for the language of other (<math>T_{no}</math>).

Thus, as per Rice's theorem the language describing any nontrivial property of Turing machine is not recursive. It can either be recursively enumerable or not recursively enumerable. (Obviously there are also other languages which are not recursive)

Examples

(1) <math>L(M)</math> has at least 10 strings

We can have <math>T_{yes}</math> for <math>\Sigma^*</math> and <math>T_{no}</math> for <math>\phi</math>. Hence, <math>L = \{M| L(M)</math> has at least 10 strings<math>\}</math> is not Turing decidable (not recursive).

(2) <math>L(M)</math> has at most 10 strings

We can have <math>T_{yes}</math> for <math>\phi</math> and <math>T_{no}</math> for <math>\Sigma^*</math>. Hence, <math>L = \{M| L(M)</math> has at most 10 strings<math>\}</math> is not Turing decidable (not recursive).

(3) <math>L(M)</math> is recognized by a <math>TM</math> having even number of states

This is a trivial property. This set equals the set of recursively enumerable languages.

(4) <math>L(M)</math> is a subset of <math>\Sigma^{*}</math>

This is a trivial property. All languages are subset of <math>\Sigma^{*}</math> and hence this set contains all languages including all recursively enumerable languages.

Part 2

Any non-monotonic property about the language recognized by a Turing machine is unrecognizable

For a property to be non-monotonic, there should exist at least two Turing machines, the property holding for the language of one (<math>T_{yes}</math>) and not holding for the language of other (<math>T_{no}</math>) and the language of <math>T_{yes}</math> must be a proper subset of the language of <math>T_{no}</math>.

Examples

(1) <math>L(M)</math> is finite

We can have <math>T_{yes}</math> for <math>\phi</math> and <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\phi \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> is finite<math>\}</math> is not Turing recognizable (not recursively enumerable)

(2) <math>L(M) = \{0\}</math>

We can have <math>T_{yes}</math> for <math>\{0\}</math> and <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\{0\} \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M) = \{0\}\}</math> is not Turing recognizable (not recursively enumerable)

(3) <math>L(M)</math> is regular

We can have <math>T_{yes}</math> for <math>\phi</math> and <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\phi \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> is regular<math>\}</math> is not Turing recognizable (not recursively enumerable)

(4) <math>L(M)</math> is not regular

We can have <math>T_{yes}</math> for <math>\{a^nb^n|n\ge0\}</math> and <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\{a^nb^n|n\ge0\}\subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> is not regular<math>\}</math> is not Turing recognizable (not recursively enumerable)

(5) <math>L(M)</math> is infinite

We cannot have <math>T_{yes}</math> and <math>T_{no}</math> such that <math>L(T_{yes}) \subset L(T_{no})</math>. Hence, this is not a non-monotonic property and Rice's <math>2^{nd}</math> theorem is not applicable. Still, <math>L = \{M| L(M)</math> is infinite <math>\}</math> is not Turing recognizable (not recursively enumerable)

(6) <math>L(M)</math> has at least 10 strings

We cannot have <math>T_{yes}</math> and <math>T_{no}</math> such that <math>L(T_{yes}) \subset L(T_{no})</math>. Hence, this is not a non-monotonic property and Rice's <math>2^{nd}</math> theorem is not applicable.

(7) <math>L(M)</math> has at most 10 strings

We can have <math>T_{yes}</math> for <math>\phi</math> and <math>T_{no}</math> for <math>\Sigma^*</math>(<math>\phi \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> has at most 10 strings<math>\}</math> is not Turing decidable (not recursively)






blog comments powered by Disqus

Rice's Theorem[edit]

Reference

Part 1[edit]

Any non-trivial property about the language recognized by a Turing machine is undecidable

For a property to be non-trivial, there should exist at least two Turing machines, the property holding for the language of one (<math>T_{yes}</math>) and not holding for the language of other (<math>T_{no}</math>).

Thus, as per Rice's theorem the language describing any nontrivial property of Turing machine is not recursive. It can either be recursively enumerable or not recursively enumerable. (Obviously there are also other languages which are not recursive)

Examples[edit]

(1) <math>L(M)</math> has at least 10 strings

We can have <math>T_{yes}</math> for <math>\Sigma^*</math> and <math>T_{no}</math> for <math>\phi</math>. Hence, <math>L = \{M| L(M)</math> has at least 10 strings<math>\}</math> is not Turing decidable (not recursive).

(2) <math>L(M)</math> has at most 10 strings

We can have <math>T_{yes}</math> for <math>\phi</math> and <math>T_{no}</math> for <math>\Sigma^*</math>. Hence, <math>L = \{M| L(M)</math> has at most 10 strings<math>\}</math> is not Turing decidable (not recursive).

(3) <math>L(M)</math> is recognized by a <math>TM</math> having even number of states

This is a trivial property. This set equals the set of recursively enumerable languages.

(4) <math>L(M)</math> is a subset of <math>\Sigma^{*}</math>

This is a trivial property. All languages are subset of <math>\Sigma^{*}</math> and hence this set contains all languages including all recursively enumerable languages.

Part 2[edit]

Any non-monotonic property about the language recognized by a Turing machine is unrecognizable

For a property to be non-monotonic, there should exist at least two Turing machines, the property holding for the language of one (<math>T_{yes}</math>) and not holding for the language of other (<math>T_{no}</math>) and the language of <math>T_{yes}</math> must be a proper subset of the language of <math>T_{no}</math>.

Examples[edit]

(1) <math>L(M)</math> is finite

We can have <math>T_{yes}</math> for <math>\phi</math> and <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\phi \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> is finite<math>\}</math> is not Turing recognizable (not recursively enumerable)

(2) <math>L(M) = \{0\}</math>

We can have <math>T_{yes}</math> for <math>\{0\}</math> and <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\{0\} \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M) = \{0\}\}</math> is not Turing recognizable (not recursively enumerable)

(3) <math>L(M)</math> is regular

We can have <math>T_{yes}</math> for <math>\phi</math> and <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\phi \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> is regular <math>\}</math> is not Turing recognizable (not recursively enumerable)

(4) <math>L(M)</math> is not regular

We can have <math>T_{yes}</math> for <math>\{a^nb^n|n\ge0\}</math> and <math>T_{no}</math> for <math>\Sigma^*</math> (<math>\{a^nb^n|n\ge0\}\subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> is not regular<math>\}</math> is not Turing recognizable (not recursively enumerable)

(5) <math>L(M)</math> is infinite

We cannot have <math>T_{yes}</math> and <math>T_{no}</math> such that <math>L(T_{yes}) \subset L(T_{no})</math>. Hence, this is not a non-monotonic property and Rice's <math>2^{nd}</math> theorem is not applicable. Still, <math>L = \{M| L(M)</math> is infinite <math>\}</math> is not Turing recognizable (not recursively enumerable)

(6) <math>L(M)</math> has at least 10 strings

We cannot have <math>T_{yes}</math> and <math>T_{no}</math> such that <math>L(T_{yes}) \subset L(T_{no})</math>. Hence, this is not a non-monotonic property and Rice's <math>2^{nd}</math> theorem is not applicable.

(7) <math>L(M)</math> has at most 10 strings

We can have <math>T_{yes}</math> for <math>\phi</math> and <math>T_{no}</math> for <math>\Sigma^*</math>(<math>\phi \subset \Sigma^*</math>). Hence, <math>L = \{M| L(M)</math> has at most 10 strings<math>\}</math> is not Turing decidable (not recursively)






blog comments powered by Disqus