(Created page with "A processor uses 2-level page tables for virtual to physical address translation. Page tables for both levels are stored in the main memory. Virtual and physical addresses are...")
 
Line 25: Line 25:
 
(A) 8 KB (B) 12 KB (C) 16 KB (D) 20 KB
 
(A) 8 KB (B) 12 KB (C) 16 KB (D) 20 KB
  
{{Template:FBC}}
+
{{Template:FBD}}
  
  

Revision as of 21:59, 27 February 2014

A processor uses 2-level page tables for virtual to physical address translation. Page tables for both levels are stored in the main memory. Virtual and physical addresses are both 32 bits wide. The memory is byte addressable. For virtual to physical address translation, the 10 most significant bits of the virtual address are used as index into the first level page table while the next 10 bits are used as index into the second level page table. The 12 least significant bits of the virtual address are used as offset within the page. Assume that the page table entries in both levels of page tables are 4 bytes wide. Further, the processor has a translation look-aside buffer (TLB), with a hit rate of 96%. The TLB caches recently used virtual page numbers and the corresponding physical page numbers. The processor also has a physically addressed cache with a hit rate of 90%. Main memory access time is 10 ns, cache access time is 1 ns, and TLB access time is also 1 ns.

78. Assuming that no page faults occur, the average time taken to access a virtual address is approximately (to the nearest 0.5 ns)

(A) 1.5 ns (B) 2 ns (C) 3 ns (D) 4 ns

79. Suppose a process has only the following pages in its virtual address space: two contiguous code pages starting at virtual address 0×00000000, two contiguous data pages starting at virtual address 0×00400000, and a stack page starting at virtual address 0×FFFFF000. The amount of memory required for storing the page tables of this process is

(A) 8 KB (B) 12 KB (C) 16 KB (D) 20 KB




blog comments powered by Disqus

A processor uses 2-level page tables for virtual to physical address translation. Page tables for both levels are stored in the main memory. Virtual and physical addresses are both 32 bits wide. The memory is byte addressable. For virtual to physical address translation, the 10 most significant bits of the virtual address are used as index into the first level page table while the next 10 bits are used as index into the second level page table. The 12 least significant bits of the virtual address are used as offset within the page. Assume that the page table entries in both levels of page tables are 4 bytes wide. Further, the processor has a translation look-aside buffer (TLB), with a hit rate of 96%. The TLB caches recently used virtual page numbers and the corresponding physical page numbers. The processor also has a physically addressed cache with a hit rate of 90%. Main memory access time is 10 ns, cache access time is 1 ns, and TLB access time is also 1 ns.

78. Assuming that no page faults occur, the average time taken to access a virtual address is approximately (to the nearest 0.5 ns)

(A) 1.5 ns (B) 2 ns (C) 3 ns (D) 4 ns

79. Suppose a process has only the following pages in its virtual address space: two contiguous code pages starting at virtual address 0×00000000, two contiguous data pages starting at virtual address 0×00400000, and a stack page starting at virtual address 0×FFFFF000. The amount of memory required for storing the page tables of this process is

(A) 8 KB (B) 12 KB (C) 16 KB (D) 20 KB

<comments />