Arjun Suresh (talk | contribs) (Created page with "What is the value of $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n}$ ? (A) 0 '''(B) $e^{-2}$''' (C) $e^{-1/2}$ (D) 1 ==={{Template:Author|Happy Mitta...") |
Arjun Suresh (talk | contribs) |
||
Line 10: | Line 10: | ||
==={{Template:Author|Happy Mittal|{{mittalweb}} }}=== | ==={{Template:Author|Happy Mittal|{{mittalweb}} }}=== | ||
We know that $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{n} = e^{-1}$, so | We know that $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{n} = e^{-1}$, so | ||
− | $$\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n} = e^{-2}$$. So option <b>(B)</b> is correct. | + | $$\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n} = e^{-2}$$. So, option <b>(B)</b> is correct. |
{{Template:FBD}} | {{Template:FBD}} |
What is the value of $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n}$ ?
(A) 0
(B) $e^{-2}$
(C) $e^{-1/2}$
(D) 1
We know that $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{n} = e^{-1}$, so $$\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n} = e^{-2}$$. So, option (B) is correct.
What is the value of $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n}$ ?
(A) 0
(B) $e^{-2}$
(C) $e^{-1/2}$
(D) 1
We know that $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{n} = e^{-1}$, so $$\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n} = e^{-2}$$. So option (B) is correct.