(For CFGs G, G1 and G2 and regular set R)
(For CFGs G, G1 and G2 and regular set R)
Line 70: Line 70:
  
 
===For CFGs G, G1 and G2 and regular set R===
 
===For CFGs G, G1 and G2 and regular set R===
 +
The following problems are undecidable:
  
1.) the compliment of <math>(L(G1))^\complement</math> is a CFL
+
# <math>(L(G1))^\complement</math> is a CFL
      2.) L(G1) intersected with L(G2) is a CFL
+
# L(G1) \cap L(G2) is a CFL
3.) L(G1) = R
+
# L(G1) \cap L(G2) is empty
It is undecidable whether an arbitrary CFG is ambiguous
+
# L(G1) = R
    It is undecidable for arbitrary CFG's G1 and G2 whether L(G1) intersected with L(G2) is empty
+
# Whether G is ambiguous

Revision as of 18:31, 26 February 2014

Grammar: Decidable and Undecidable Problems
Grammar <math>w \in L(G)</math> <math>L(G) = \phi</math> <math>L(G) = \Sigma^*</math> <math>L(G_1) \subseteq L(G_2)</math> <math>L(G_1) = L(G_2)</math> <math>L(G_1) \cap L(G_2) = \phi</math> <math>L(G) is finite</math>
Regular Grammar D D D D D D D
Det. Context Free D D D UD ? UD D
Context Free D D UD UD UD UD D
Context Sensitive D UD UD UD UD UD UD
Recursive D UD UD UD UD UD UD
Recursively Enumerable D UD UD UD UD UD UD


Other Undecidable Problems

For CFGs G, G1 and G2 and regular set R

The following problems are undecidable:

  1. <math>(L(G1))^\complement</math> is a CFL
  2. L(G1) \cap L(G2) is a CFL
  3. L(G1) \cap L(G2) is empty
  4. L(G1) = R
  5. Whether G is ambiguous
Grammar: Decidable and Undecidable Problems
Grammar <math>w \in L(G)</math> <math>L(G) = \phi</math> <math>L(G) = \Sigma^*</math> <math>L(G_1) \subseteq L(G_2)</math> <math>L(G_1) = L(G_2)</math> <math>L(G_1) \cap L(G_2) = \phi</math> <math>L(G) is finite</math>
Regular Grammar D D D D D D D
Det. Context Free D D D UD ? UD D
Context Free D D UD UD UD UD D
Context Sensitive D UD UD UD UD UD UD
Recursive D UD UD UD UD UD UD
Recursively Enumerable D UD UD UD UD UD UD


Other Undecidable Problems[edit]

For CFGs G, G1 and G2 and regular set R[edit]

The following problems are undecidable:

  1. <math>(L(G1))^\complement</math> is a CFL
  2. L(G1) \cap L(G2) is a CFL
  3. L(G1) \cap L(G2) is empty
  4. L(G1) = R
  5. Whether G is ambiguous