Arjun Suresh (talk | contribs) (→For arbitrary CFGs G, G1 and G2 and regular set R) |
Arjun Suresh (talk | contribs) |
||
Line 9: | Line 9: | ||
! <math>L(G_1) = L(G_2)</math> | ! <math>L(G_1) = L(G_2)</math> | ||
! <math>L(G_1) \cap L(G_2) = \phi</math> | ! <math>L(G_1) \cap L(G_2) = \phi</math> | ||
− | ! <math>L(G) | + | ! <math>L(G)</math> is finite |
|- | |- | ||
|Regular Grammar | |Regular Grammar |
Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G)</math> is finite |
---|---|---|---|---|---|---|---|
Regular Grammar | D | D | D | D | D | D | D |
Det. Context Free | D | D | D | UD | ? | UD | D |
Context Free | D | D | UD | UD | UD | UD | D |
Context Sensitive | D | UD | UD | UD | UD | UD | UD |
Recursive | D | UD | UD | UD | UD | UD | UD |
Recursively Enumerable | D | UD | UD | UD | UD | UD | UD |
The following problems are undecidable:
Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G)</math> is finite |
---|---|---|---|---|---|---|---|
Regular Grammar | D | D | D | D | D | D | D |
Det. Context Free | D | D | D | UD | ? | UD | D |
Context Free | D | D | UD | UD | UD | UD | D |
Context Sensitive | D | UD | UD | UD | UD | UD | UD |
Recursive | D | UD | UD | UD | UD | UD | UD |
Recursively Enumerable | D | UD | UD | UD | UD | UD | UD |
The following problems are undecidable: