Arjun Suresh (talk | contribs) |
Arjun Suresh (talk | contribs) |
||
Line 94: | Line 94: | ||
# Whether <math>L(R) \subseteq L(G)</math>? | # Whether <math>L(R) \subseteq L(G)</math>? | ||
# Whether <math>L(G)</math> is a CFL? (trivial) | # Whether <math>L(G)</math> is a CFL? (trivial) | ||
− | + | ===Note=== | |
− | For any $TM$ $M$, $\Sigma^*-L(M)$ is a $CFL$ | + | For any $TM$ $M$, $\Sigma^*-L(M)$, is a $CFL$ |
Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G)</math> is finite |
---|---|---|---|---|---|---|---|
Regular Grammar | D | D | D | D | D | D | D |
Det. Context Free | D | D | D | UD | ? | UD | D |
Context Free | D | D | UD | UD | UD | UD | D |
Context Sensitive | D | UD | UD | UD | UD | UD | UD |
Recursive | D | UD | UD | UD | UD | UD | UD |
Recursively Enumerable | UD | UD | UD | UD | UD | UD | UD |
Checking if <math>L(CFG)</math> is finite is decidable because we just need to see if <math>L(CFG)</math> contains any string with length between <math>n</math> and <math>2n-1</math>, where <math>n</math> is the pumping lemma constant. If so, <math>L(CFG)</math> is infinite otherwise its finite.
The following problems are undecidable:
But whether <math>L(G) \subseteq L(R)</math> is decidable. (We can test if <math>L(G) \cap compl(L(R))</math> is <math>\phi</math>)
The following problems are decidable:
For any $TM$ $M$, $\Sigma^*-L(M)$, is a $CFL$
Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G)</math> is finite |
---|---|---|---|---|---|---|---|
Regular Grammar | D | D | D | D | D | D | D |
Det. Context Free | D | D | D | UD | ? | UD | D |
Context Free | D | D | UD | UD | UD | UD | D |
Context Sensitive | D | UD | UD | UD | UD | UD | UD |
Recursive | D | UD | UD | UD | UD | UD | UD |
Recursively Enumerable | UD | UD | UD | UD | UD | UD | UD |
Checking if <math>L(CFG)</math> is finite is decidable because we just need to see if <math>L(CFG)</math> contains any string with length between <math>n</math> and <math>2n-1</math>, where <math>n</math> is the pumping lemma constant. If so, <math>L(CFG)</math> is infinite otherwise its finite.
The following problems are undecidable:
But whether <math>L(G) \subseteq L(R)</math> is decidable. (We can test if <math>L(G) \cap compl(L(R))</math> is <math>\phi</math>)
The following problems are decidable:
For any $TM$ $M$, $\Sigma^*-L(M)$, is a $CFL$