(Created page with "Consider the following well-formed formulae: <br> I. ¬∀x(P(x))   II. ¬∃x(P(x))   III. ¬∃x(¬P(x))   IV. &exist...")
 
Line 1: Line 1:
 
Consider the following well-formed formulae:
 
Consider the following well-formed formulae:
 
<br>
 
<br>
I. &not;&forall;x(P(x))
+
I. $&not;&forall;x(P(x))$
 
&nbsp;
 
&nbsp;
II. &not;&exist;x(P(x))
+
II. $&not;&exist;x(P(x))$
 
&nbsp;
 
&nbsp;
III. &not;&exist;x(&not;P(x))
+
III. $&not;&exist;x(&not;P(x))$
 
&nbsp;
 
&nbsp;
IV. &exist;x(&not;P(x))
+
IV. $&exist;x(&not;P(x))$
 
<br>
 
<br>
 
Which of the above are equivalent?
 
Which of the above are equivalent?
<br>
+
<b>(A) </b>I and III
+
(A) I and III
&nbsp;
+
 
<b>(B) </b>I and IV
+
'''(B) I and IV'''
&nbsp;
+
<b>(C) </b>II and III
+
(C) II and III
&nbsp;
+
 
<b>(D) </b>II and IV
+
(D) II and IV
  
 
==={{Template:Author|Happy Mittal|{{mittalweb}} }}===
 
==={{Template:Author|Happy Mittal|{{mittalweb}} }}===
A formula &forall;x(P(x)) is equivalent to formula &not;&exist;x(&not;P(x)) i.e. add &not; inside and outside, and
+
A formula $&forall;x(P(x))$ is equivalent to formula $&not;&exist;x(&not;P(x))$ i.e. add $&not;$ inside and outside, and
convert &forall; to &exist;.
+
convert $&forall;$ to &exist;$.
 
<br>
 
<br>
So, &not;&forall;x(P(x)) is equivalent to &exist;x(&not;P(x)). So option <b>(B)</b> is correct.
+
So, $&not;&forall;x(P(x))$ is equivalent to $&exist;x(&not;P(x))$.  
  
  

Revision as of 20:02, 14 July 2014

Consider the following well-formed formulae:
I. $¬∀x(P(x))$   II. $¬∃x(P(x))$   III. $¬∃x(¬P(x))$   IV. $∃x(¬P(x))$
Which of the above are equivalent?

(A) I and III

(B) I and IV

(C) II and III

(D) II and IV

Solution by Happy Mittal

A formula $∀x(P(x))$ is equivalent to formula $¬∃x(¬P(x))$ i.e. add $¬$ inside and outside, and convert $∀$ to ∃$.
So, $¬∀x(P(x))$ is equivalent to $∃x(¬P(x))$.




blog comments powered by Disqus

Consider the following well-formed formulae:
I. $¬∀x(P(x))$   II. $¬∃x(P(x))$   III. $¬∃x(¬P(x))$   IV. $∃x(¬P(x))$
Which of the above are equivalent?

(A) I and III

(B) I and IV

(C) II and III

(D) II and IV

Solution by Happy Mittal[edit]

A formula $∀x(P(x))$ is equivalent to formula $¬∃x(¬P(x))$ i.e. add $¬$ inside and outside, and convert $∀$ to ∃$.
So, $¬∀x(P(x))$ is equivalent to $∃x(¬P(x))$.




blog comments powered by Disqus