Line 16: Line 16:
  
 
[[Category: GATE2010]]
 
[[Category: GATE2010]]
[[Category: Calculus questions]]
+
[[Category: Calculus questions from GATE]]
[[Category:Mathematics questions]]
 

Latest revision as of 11:50, 15 July 2014

What is the value of $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n}$ ?

(A) 0

(B) $e^{-2}$

(C) $e^{-1/2}$

(D) 1

Solution by Happy Mittal

We know that $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{n} = e^{-1}$, so $$\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n} = e^{-2}$$ So, option (B) is correct.




blog comments powered by Disqus

What is the value of $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n}$ ?

(A) 0

(B) $e^{-2}$

(C) $e^{-1/2}$

(D) 1

Solution by Happy Mittal[edit]

We know that $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{n} = e^{-1}$, so $$\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n} = e^{-2}$$ So, option (B) is correct.




blog comments powered by Disqus