(1) <math>\forall (x) P(x) \vee \forall(x)Q(x) \implies \forall (x) (P(x) \vee Q(x))</math>
(2) <math>\exists (x) P(x) \wedge \forall(x)Q(x) \implies \exists (x) (P(x) \wedge Q(x))</math>
(3) <math>\exists (x) (P(x) \vee Q(x)) \implies \forall (x) P(x) \vee \forall (x) Q(x)</math>
(4) <math>\exists (x) (P(x) \vee Q(x)) \implies \sim \forall (x) </math>
(1) <math>\forall (x) P(x) \vee \forall(x)Q(x) \implies \forall (x) (P(x) \vee Q(x))</math>
(2) <math>\exists (x) P(x) \wedge \forall(x)Q(x) \implies \exists (x) (P(x) \wedge Q(x))</math>
(3) <math>\exists (x) (P(x) \vee Q(x)) \implies \forall (x) P(x) \vee \forall (x) Q(x)</math>
(4) <math>\exists (x) (P(x) \vee Q(x)) \implies \sim \forall (x) </math>