| Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G) is finite</math> |
|---|---|---|---|---|---|---|---|
| Regular Grammar | D | D | D | D | D | D | D |
| Det. Context Free | D | D | D | UD | ? | UD | D |
| Context Free | D | D | UD | UD | UD | UD | D |
| Context Sensitive | D | UD | UD | UD | UD | UD | UD |
| Recursive | D | UD | UD | UD | UD | UD | UD |
| Recursively Enumerable | D | UD | UD | UD | UD | UD | UD |
1.) the compliment of L(G1)\complement is a CFL
2.) L(G1) intersected with L(G2) is a CFL 3.) L(G1) = R
It is undecidable whether an arbitrary CFG is ambiguous
It is undecidable for arbitrary CFG's G1 and G2 whether L(G1) intersected with L(G2) is empty
| Grammar | <math>w \in L(G)</math> | <math>L(G) = \phi</math> | <math>L(G) = \Sigma^*</math> | <math>L(G_1) \subseteq L(G_2)</math> | <math>L(G_1) = L(G_2)</math> | <math>L(G_1) \cap L(G_2) = \phi</math> | <math>L(G) is finite</math> |
|---|---|---|---|---|---|---|---|
| Regular Grammar | D | D | D | D | D | D | D |
| Det. Context Free | D | D | D | UD | ? | UD | D |
| Context Free | D | D | UD | UD | UD | UD | D |
| Context Sensitive | D | UD | UD | UD | UD | UD | UD |
| Recursive | D | UD | UD | UD | UD | UD | UD |
| Recursively Enumerable | D | UD | UD | UD | UD | UD | UD |
1.) the compliment of L(G1)\complement is a CFL
2.) L(G1) intersected with L(G2) is a CFL 3.) L(G1) = R
It is undecidable whether an arbitrary CFG is ambiguous
It is undecidable for arbitrary CFG's G1 and G2 whether L(G1) intersected with L(G2) is empty