
Facts About Eigenvalues
By Dr David Butler

Definitions

Suppose A is an n× n matrix.

• An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v.

• An eigenvector of A is a nonzero vector v such that Av = λv for some number λ.

Terminology

Let A be an n× n matrix.

• The determinant |λI − A| (for unknown λ) is called the characteristic polynomial of A.
(The zeros of this polynomial are the eigenvalues of A.)

• The equation |λI − A| = 0 is called the characteristic equation of A.
(The solutions of this equation are the eigenvalues of A.)

• If λ is an eigenvalue of A, then the subspace Eλ = {v | Av = λv} is called the eigenspace of A
associated with λ.
(This subspace contains all the eigenvectors with eigenvalue λ, and also the zero vector.)

• An eigenvalue λ∗ of A is said to have multiplicity m if, when the characteristic polynomial is
factorised into linear factors, the factor (λ− λ∗) appears m times.

Theorems

Let A be an n× n matrix.

• The matrix A has n eigenvalues (including each according to its multiplicity).

• The sum of the n eigenvalues of A is the same as the trace of A (that is, the sum of the diagonal
elements of A).

• The product of the n eigenvalues of A is the same as the determinant of A.

• If λ is an eigenvalue of A, then the dimension of Eλ is at most the multiplicity of λ.

• A set of eigenvectors of A, each corresponding to a different eigenvalue of A, is a linearly
independent set.

• If λn + cn−1λ
n−1 + · · ·+ c1λ+ c0 is the characteristic polynomial of A,

then cn−1 = −trace(A) and c0 = (−1)n|A|.

• If λn + cn−1λ
n−1 + · · ·+ c1λ+ c0 is the characteristic polynomial of A,

then An + cn−1A
n−1 + · · ·+ c1A+ c0I = O. (The Cayley-Hamilton Theorem.)

1



Examples of Problems using Eigenvalues

Problem:
If λ is an eigenvalue of the matrix A, prove that λ2 is an eigenvalue of A2.

Solution:
Since λ is an eigenvalue of A, Av = λv for some v 6= 0.
Multiplying both sides by A gives

A(Av) = A(λv)

A2v = λAv

= λλv

= λ2v

Therefore λ2 is an eigenvalue of A2. �

Problem:
Prove that the n× n matrix A and its transpose AT have the same eigenvalues.

Solution:
Consider the characteristic polynomial of AT : |λI − AT | = |(λI − A)T | = |λI − A| (since a matrix
and its transpose have the same determinant). This result is the characteristic polynomial of A, so
AT and A have the same characteristic polynomial, and hence they have the same eigenvalues. �

Problem:
The matrix A has (1, 2, 1)T and (1, 1, 0)T as eigenvectors, both with eigenvalue 7, and its trace is 2.
Find the determinant of A.

Solution:
The matrix A is a 3 × 3 matrix, so it has 3 eigenvalues in total. The eigenspace E7 contains the
vectors (1, 2, 1)T and (1, 1, 0)T , which are linearly independent. So E7 must have dimension at least
2, which implies that the eigenvalue 7 has multiplicity at least 2.

Let the other eigenvalue be λ, then from the trace λ+7+7 = 2, so λ = −12. So the three eigenvalues
are 7, 7 and -12. Hence, the determinant of A is 7× 7×−12 = −588. �
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The sum and product of eigenvalues

Theorem: If A is an n× n matrix, then the sum of the n eigenvalues of A is the trace of A and the
product of the n eigenvalues is the determinant of A.

Proof:
Write A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 .

Also let the n eigenvalues of A be λ1, . . . , λn. Finally, denote the characteristic polynomial of A by
p(λ) = |λI −A| = λn + cn−1λ

n−1 + · · ·+ c1λ+ c0. Note that since the eigenvalues of A are the zeros
of p(λ), this implies that p(λ) can be factorised as p(λ) = (λ− λ1) . . . (λ− λn).

Consider the constant term of p(λ), c0. The constant term of p(λ) is given by p(0), which can be
calculated in two ways:

Firstly, p(0) = (0− λ1) . . . (0− λn) = (−1)nλ1 . . . λn. Secondly, p(0) = |0I −A| = | −A| = (−1)n|A|.

Therefore c0 = (−1)nλ1 . . . λn = (−1)n|A|, and so λ1 . . . λn = |A|. That is, the product of the n
eigenvalues of A is the determinant of A.

Consider the coefficient of λn−1, cn−1. This is also calculated in two ways.

Firstly, it can be calculated by expanding p(λ) = (λ−λ1) . . . (λ−λn). In order to get the λn−1 term,
the λ must be chosen from n − 1 of the factors, and the constant from the other. Hence, the λn−1

term will be −λ1λn−1 − · · · − λλn−1 = −(λ1 + · · ·+ λn)λn−1. Thus cn−1 = −(λ1 + · · ·+ λn).

Secondly, this coefficient can be calculated by expanding |λI − A|:

|λI − A| =

∣∣∣∣∣∣∣∣∣
λ− a11 −a12 . . . −a1n
−a21 λ− a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . λ− ann

∣∣∣∣∣∣∣∣∣
One way of calculating determinants is to multiply the elements in positions 1j1, 2j2, . . . , njn, for
each possible permutation j1 . . . jn of 1 . . . n. If the permutation is odd, then the product is also
multiplied by −1. Then all of these n! products are added together to produce the determinant. One
of these products is (λ− a11) . . . (λ− ann). Every other possible product can contain at most n− 2
elements on the diagonal of the matrix, and so will contain at most n − 2 λ’s. Hence, when all of
these other products are expanded, they will produce a polynomial in λ of degree at most n − 2.
Denote this polynomial by q(λ).

Hence, p(λ) = (λ − a11) . . . (λ − ann) + q(λ). Since q(λ) has degree at most n − 2, it has no λn−1

term, and so the λn−1 term of p(λ) must be the λn−1 term from (λ− a11) . . . (λ− ann). However, the
argument above for (λ− λ1) . . . (λ− λn) shows that this term must be −(a11 + · · ·+ ann)λn−1.

Therefore cn−1 = −(λ1 + · · ·+ λn) = −(a11 + · · ·+ ann), and so λ1 + · · ·+ λn = a11 + · · ·+ ann. That
is, the sum of the n eigenvalues of A is the trace of A. �
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The Cayley-Hamilton Theorem

Theorem:
Let A be an n × n matrix. If λn + cn−1λ

n−1 + · · · + c1λ + c0 is the characteristic polynomial of A,
then An + cn−1A

n−1 + · · ·+ c1A+ c0I = O.

Proof:
Consider the matrix λI − A. If this matrix is multiplied by its adjoint matrix, the result will be its
determinant multiplied by the identity matrix. That is,

(λI − A)adj(λI − A) = |λI − A|I (1)

Consider the matrix adj(λI − A). Each entry of this matrix is either the positive or the negative of
the determinant of a smaller matrix produced by deleting one row and one column of λI − A. The
determinant of such a matrix is a polynomial in λ of degree at most n− 1 (since removing one row
and one column is guaranteed to remove at least one λ).

Let the polynomial in position ij of adj(λI − A) be bij0 + bij1λ+ · · ·+ bij(n−1)λ
n−1. Then

adj(λI − A) =

b110 + b111λ+ · · ·+ b11(n−1)λ
n−1 . . . b1n0 + b1n1λ+ · · ·+ b1n(n−1)λ

n−1

...
. . .

...
bn10 + bn11λ+ · · ·+ bn1(n−1)λ

n−1 . . . bnn0 + bnn1λ+ · · ·+ bnn(n−1)λ
n−1


=

b110 . . . b1n0
...

. . .
...

bn10 . . . bnn0

+

b111λ . . . b1n1λ
...

. . .
...

bn11λ . . . bnn1λ

+ · · ·+

b11(n−1)λ
n−1 . . . b1n(n−1)λ

n−1

...
. . .

...
bn1(n−1)λ

n−1 . . . bnn(n−1)λ
n−1


=

b110 . . . b1n0
...

. . .
...

bn10 . . . bnn0

+ λ

b111 . . . b1n1
...

. . .
...

bn11 . . . bnn1

+ · · ·+ λn−1

b11(n−1) . . . b1n(n−1)
...

. . .
...

bn1(n−1) . . . bnn(n−1)


Denote the matrices appearing in the above expression by B0, B1, . . . , Bn−1, respectively so that

adj(λI − A) = B0 + λB1 + · · ·+ λn−1Bn−1

Then (λI − A)adj(λI − A) = (λI − A)(B0 + λB1 + · · ·+ λn−1Bn−1

= λB0 + λ2B1 + · · ·+ λnBn−1

− AB0 − λAB1 − · · · − λn−1ABn−1

= −AB0 + λ(B0 − AB1) + · · ·+ λn−1(Bn−2 − ABn−1) + λnBn−1

Next consider |λI − A|I. This is the characteristic polynomial of A, multiplied by I. That is,

|λI − A|I = (λn + cn−1λ
n−1 + · · ·+ c1λ+ c0)I

= λnI + cn−1λ
n−1I + · · ·+ c1λI + c0I

= c0I + λ(c1I) + · · ·+ λ(cn−1I) + λnI

Substituting these two expressions into the equation (λI − A)adj(λI − A) = |λI − A|I gives

− AB0 + λ(B0 − AB1) + . . .+ λn−1(Bn−2 − ABn−1) + λnBn−1

= c0I + λ(c1I) + . . .+ λn−1(cn−1I) + λnI
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If the two sides of this equation were evaluated separately, each would be an n× n matrix with each
entry a polynomial in λ. Since these two resulting matrices are equal, the entries in each position are
also equal. That is, for each choice of i and j, the polynomials in position ij of the two matrices are
equal. Since these two polynomials are equal, the coefficients of the matching powers of λ must also
be equal. That is, for each choice of i, j and k, the coefficient of λk in position ij of one matrix is
equal to the coefficient of λk in position ij of the other matrix. Hence, when each matrix is rewritten
as sum of coefficient matrices multiplied by powers of λ (as was done above for adj(λI − A) ), then
for every k, the matrix multiplied by λk in one expression must be the same as the matrix multiplied
by λk in the other.

In other words, we can equate the matrix coeffiicients of the powers of λ in each expression. This
results in the following equations:

c0I = − AB0

c1I = B0 − AB1

...

cn−1I = Bn−2 − ABn−1

I = Bn−1

Now right-multiply each equation by successive powers of A (that is, the first is multiplied by I, the
second is multiplied by A, the third is multiplied by A2, and so on until the last is multiplied by An).
This produces the following equations:

c0I = − AB0

c1A = AB0 − A2B1

...

cn−1A
n−1 = An−1Bn−2 − AnBn−1

AnI = AnBn−1

Adding all of these equations together produces:

c0I + c1A+ · · ·+ cn−1A
n−1 + An−1 = −AB0 + AB0 − A2B1 + · · ·+ An−1Bn−2 − AnBn−1 + AnBn−1

c0I + c1A+ · · ·+ cn−1A
n−1 + An−1 = O �
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Polynomials acted upon matrices

Theorem:
Let A be an n×n matrix with eigenvalues λ1, . . . , λn (including multiplicity). Let g(x) = a0 +a1x+
· · · + akx

k be a polynomial, and let g(A) = a0I + a1A + · · · + akA
k. Then the eigenvalues of g(A)

are g(λ1), . . . , g(λn) (including multiplicity).

Proof:
We will begin by showing that the determinant of g(A) is g(λ1) . . . g(λn).

By the fundamental theorem of algebra, the polynomial g(x) can be factorised into k linear factors
over the complex numbers. Hence we can write g(x) = ak(x − c1) . . . (x − ck) for some complex
numbers c1, . . . , ck. Now a matrix commutes with all its powers, and with the identity, so it is also
possible to write g(A) as g(A) = ak(A− c1I) . . . (A− ckI).

Also, denote the characteristic polynomial of A by p(λ) = |λI − A|. Since the eigenvalues of A are
λ1, . . . , λn, the characteristic polynomial can be factorised as p(λ) = (λ− λ1) . . . (λ− λn).

Consider the determinant of g(A):

|g(A)| = |ak(A− c1I) . . . (A− ckI)|
= (ak)

n|A− c1I| . . . |A− ckI|
= (ak)

n| − (c1I − A)| . . . | − (ckI − A)|
= (ak)

n(−1)n|c1I − A| . . . (−1)n|ckI − A|
= (ak)

n(−1)nk|c1I − A| . . . |ckI − A|

Now |ciI − A| is |λI − A| with λ replaced by ci, that is, it is the characteristic polynomial of A
evaluated at λ = ci. Thus |ciI − A| = p(ci) = (ci − λ1) . . . (ci − λn).

So, |g(A)| = (ak)
n(−1)nkp(c1) . . . p(ck)

= (ak)
n(−1)nk × (c1 − λ1) . . . (c1 − λn)

× . . .
× (ck − λ1) . . . (ck − λn)

= (ak)
n × (λ1 − c1) . . . (λn − c1)
× . . .
× (λ1 − ck) . . . (λn − ck)

= (ak)
n × (λ1 − c1) . . . (λ1 − ck)
× . . .
× (λn − c1) . . . (λn − ck)

= ak(λ1 − c1) . . . (λ1 − ck)
× . . .
× ak(λn − c1) . . . (λn − ck)

= g(λ1)× · · · × g(λn)

The above argument shows that if g(x) is any polynomial, then |g(A)| = g(λ1) . . . g(λn).
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Now we will show that the eigenvalues of g(A) are g(λ1), . . . , g(λn).

Let a be any number and consider the polynomial h(x) = a− g(x). Then h(A) = aI − g(A), and the
argument above shows that |h(A)| = h(λ1) . . . h(λn). Substituting the formulas for h(x) and h(A)
into this equation gives that |aI − g(A)| = (a− g(λ1)) . . . (a− g(λn)).

Since this is true for all possible a, it can be concluded that as polynomials, |λI − g(A)| =
(λ− g(λ1)) . . . (λ− g(λn)). But |λI − g(A)| is the characteristic polynomial of g(A), which has been
fully factorised here, so this implies that the eigenvalues of g(A) are g(λ1), . . . , g(λn). �

Some corollaries:
Let A be an n× n matrix with eigenvalues λ1, . . . , λn. Then:

• 2A has eigenvalues 2λ1, . . . , 2λn.

• A2 has eigenvalues λ21, . . . , λ2n.

• A+ 2I has eigenvalues λ1 + 2, . . . , λn + 2.

• If p(λ) is the characteristic polynomial of A, then p(A) has eigenvalues 0, . . . , 0.
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Similar matrices

Definition:
Two matrices A and B are called similar if there exists an invertible matrixX such that A = X−1BX.

Theorem:
Suppose A and B are similar matrices. Then A and B have the same characteristic polynomial and
hence the same eigenvalues.

Proof:
Consider the characteristic polynomial of A:

|λI − A| = |λI −X−1BX|
= |λX−1IX −X−1BX|
= |X−1(λI −B)X|
= |X−1||λI −B||X|

=
1

|X|
|λI −B||X|

= |λI −B|

This is the characteristic polynomial of B, so A and B have the same characteristic polynomial.
Hence A and B have the same eigenvalues �.
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Multiplicity and the dimension of an eigenspace

Theorem:
If λ∗ is an eigenvalue of A, then the multiplicity of λ∗ is at least the dimension of the eigenspace Eλ∗ .

Proof:
Suppose the dimension of Eλ∗ is m and let v1, . . . , vm form a basis for Eλ∗ .

It is possible to find n − m other vectors um+1, . . . , un so that v1, . . . , vm, um+1, . . . , un form a
basis for Rn. Let X be the n × n matrix with these n basis vectors as its columns. This matrix X
is invertible since its columns are linearly independent.

Consider the matrix B = X−1AX. This matrix is similar to A and so it has the same characteristic
polynomial as A. In order to describe the entries of B, we will first investigate AX.

AX = A[v1 | · · · | vm | um+1 | · · · | un]

= [Av1 | · · · | Avm | Aum+1 | · · · | Aun]

= [λ∗v1 | · · · | λ∗vm | Aum+1 | · · · | Aun] (since v1, . . . , vm are eigenvalues of A)

B = X−1AX

= X−1[λ∗v1 | · · · | λ∗vm | Aum+1 | · · · | Aun]

= [X−1(λ∗v1) | · · · | X−1(λ∗vm) | X−1Aum+1 | · · · | X−1Aun]

= [λ∗X−1v1 | · · · | λ∗X−1vm | X−1Aum+1 | · · · | X−1Aun]

Now consider X−1vi. This is X−1 multiplied by the i’th column of X, and so it is the i’th column
of X−1X. However X−1X = I, so its i’th column is the i’th standard basis vector ei. Thus:

B = [λ∗X−1v1 | · · · | λ∗X−1vm | X−1Aum+1 | · · · | X−1Aun]

= [λ∗e1 | · · · | λ∗em | X−1Aum+1 | · · · | X−1Aun]

=



λ∗ 0 . . . 0 b1(m+1) . . . b1n
0 λ∗ . . . 0 b2(m+1) . . . b2n
...

...
. . .

...
...

. . .
...

0 0 . . . λ∗ bm(m+1) . . . bmn
0 0 . . . 0 b(m+1)(m+1) . . . b(m+1)n
...

...
. . .

...
...

. . .
...

0 0 . . . 0 bn(m+1) . . . bnn



So, λI −B =



λ− λ∗ 0 . . . 0 −b1(m+1) . . . −b1n
0 λ− λ∗ . . . 0 −b2(m+1) . . . −b2n
...

...
. . .

...
...

. . .
...

0 0 . . . λ− λ∗ −bm(m+1) . . . −bmn
0 0 . . . 0 λ− b(m+1)(m+1) . . . −b(m+1)n
...

...
. . .

...
...

. . .
...

0 0 . . . 0 −bn(m+1) . . . λ− bnn



If the determinant of this matrix λI − B is expanded progressively along the first m columns, it
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results in the following:

|λI −B| = (λ− λ∗) . . . (λ− λ∗)

∣∣∣∣∣∣∣
λ− b(m+1)(m+1) . . . −b(m+1)n

...
. . .

...
−bn(m+1) . . . λ− bnn

∣∣∣∣∣∣∣
= (λ− λ∗)m

∣∣∣∣∣∣∣
λ− b(m+1)(m+1) . . . −b(m+1)n

...
. . .

...
−bn(m+1) . . . λ− bnn

∣∣∣∣∣∣∣
Hence, the factor (λ − λ∗) appears at least m times in the characteristic polynomial of B (it may
appear more times because of the part of the determinant that is as yet uncalculated). Since A
and B have the same characteristic polynomial, the factor (λ− λ∗) appears at least m times in the
characteristic polynomial of A. That is, the multiplicity of the eigenvalue λ∗ is at least m. �
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The product of two matrices

Theorem:
Let A be an m × n matrix and let B be an n ×m matrix, with n ≥ m. Then the n eigenvalues of
BA are the m eigenvalues of AB with the extra eigenvalues being 0.

Proof:
Consider the (m+ n)× (m+ n) matrices:

M =

(
On×n On×m
A AB

)
, N =

(
BA On×m
A Om×m

)
Also let X =

(
In×n B
Om×n Im×m

)

Then

Then XM =

(
I B
O I

)(
O O
A AB

)
=

(
BA BAB
A AB

)
And NX =

(
BA O
A O

)(
I B
O I

)
=

(
BA BAB
A AB

)

So XM = NX. Now X is an upper triangular matrix with every entry on the diagonal equal to
1. Therefore it is invertible. Hence we can multiply both sides of this equation by X−1 to get
M = X−1NX. Thus M and N are similar and so have the same characteristic polynomial.

Consider the characteristic polynomial of each:

|λI −M | =
∣∣∣∣λI − (On×n On×m

A AB

)∣∣∣∣
=

∣∣∣∣(λIn×n On×m
−A λIm×m − AB

)∣∣∣∣
= |λIn×n||λIm×m − AB|
= λn|λIm×m − AB|

|λI −N | =
∣∣∣∣λI − (BA On×m

A Om×m

)∣∣∣∣
=

∣∣∣∣(λIn×n − AB On×m
−A λIm×m

)∣∣∣∣
= |λIn×n −BA||λIm×m|
= λm|λIm×m −BA|
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Since M and N have the same characteristic polynomial,

|λI −M | = |λI −N |
λn|λIm×m − AB| = λm|λIm×m −BA|

λn−m|λIm×m − AB| = |λIm×m −BA|

So the characteristic polynomial of BA is the same as the characteristic polynomial of AB, but
multiplied by λn−m. Hence BA has all of the eigenvalues of AB, but with n−m extra zeros. �
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A proof in finite geometry with a surprising use of eigenvalues

Preliminaries:

• A finite projective plane is a collection of finitely many points and finitely many lines such
that

– Every two points are contained in precisely one line.

– Every two lines share precisely one point.

– There are at least three points on every line.

– Not all the points are on the same line.

• For a finite projective plane, there is a number q called the order such that:

– There are q + 1 points on every line.

– There are q + 1 lines through every point.

– There are q2 + q + 1 points in total.

– There are q2 + q + 1 lines in total.

• A polarity of a finite projective plane is a one-to-one map σ which maps points to lines and
lines to points, so that if the point P is on the line `, then the point σ(`) is on the line σ(P ),
and also for any point or line X, σ(σ(X)) = X.

• An absolute point with respect to a polarity σ of a projective plane is a point P such that
P is on the line σ(P ).

Theorem: A polarity of a finite projective plane plane must have an absolute point.

Proof: Let σ be a polarity of a finite projective plane of order q. Denote the points in the projective
plane by P1, P2, . . . , Pq2+q+1, and denote the line σ(Pi) by `i for each i = 1, . . . , q2 + q + 1. Note
that since σ is a polarity, then σ(`i) = σ(σ(Pi)) = Pi for any i.

Create a (q2 + q + 1)× (q2 + q + 1) matrix A as follows: if the point Pi is on the line `j, then put a
1 in entry ij of the matrix A, otherwise, put a 0 in position ij. The matrix A is called an incidence
matrix of the projective plane.

Since σ is a polarity, if Pi is on `j, then σ(Pi) is on σ(`j) = σ(σ(Pj)) = Pj. Hence if there is a 1 in
position ij, then there is also a 1 in position ji. Thus the matrix A is symmetric and AT = A.

Now an abolute point is a point Pi such that Pi is on σ(Pi). That is, an absolute point is a point such
that Pi is on `i. Hence, if σ has an absolute point, then there is a 1 on the diagonal of A. Therefore,
the number of absolute points of σ is the sum of the diagonal elements of A. That is, it is the trace
of A.

To find the trace of A, we may instead find the sum of the eigenvalues of A.

Firstly note that every row of A contains precisely q + 1 entries that are 1 since each point lies on
q + 1 lines. Hence the rows of A all add to q + 1. Therefore when A is multiplied by (1, 1, . . . , 1)T ,
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the result is (q + 1, . . . , q + 1)T . This means that (1, . . . , 1)T is an eigenvector of A with eigenvalue
q + 1.

Consider the matrix A2. If A has eigenvalues of λ1, . . . , λq2+q+1, then A2 will have eigenvalues of
λ21, . . . , λ2q2+q+1. Hence information about the eigenvalues of A can be obtained from the eigenvalues

of A2.

Since A = AT , we have that A2 = AA = ATA. The ij element of ATA is the dot product of the
ith row of AT with the jth column of A, which is the dot product of the ith column of A with the
jth column of A. Now each column of A represents a line of the projective plane and has a 1 in the
position of each of the points on this line. Two lines share precisely one point, and so two columns
of A are both 1 in precisely one position. Hence the dot product of two distinct columns of A is 1.
One the other hand, any line contains q + 1 points, and therefore any column of A has q + 1 entries
equal to 1. Hence the dot product of a column of A with itself is q + 1.

Therefore, the diagonal entries of A2 are q+1 and the other entries of A2 are 1. That is A2 = J+ qI,
where J is a matrix with all of its entries equal to 1.

Now the matrix J is equal to the product of two vectors (1, . . . , 1)T (1, . . . , 1). Multiplying these
vectors in the opposite order gives a 1 × 1 matrix: (1, . . . , 1)(1, . . . , 1)T = [q2 + q + 1]. This 1 × 1
matrix has eigenvalue q2 + q+ 1. Now for any two matrices such that AB and BA are both defined,
the eigenvalues of the larger matrix are the same as the eigenvalues of the smaller matrix with the
extra eigenvalues all being zero. Thus the q2 + q + 1 eigenvalues of J must be q2 + q + 1, 0, . . . , 0.

Consider the polynomial g(x) = x + q. The matrix g(J) = J + qI = A2. Therefore the eigenvalues
of A2 are g(q2 + q + 1), g(0) . . . , g(0). That is, the eigenvalues of A2 are q2 + 2q + 1, q, . . . , q. One
of the eigenvalues of A is q + 1, and so the remaining eigenvalues of A must all be

√
q or −√q

Suppose there are k eigenvalues equal to −√q and q2 + q − k equal to
√
q. Then the trace of A is

equal to −k√q + (q2 + q − k)
√
q + q + 1 =

√
q(q2 + q − 2k) + q + 1

If q = p2 for some natural number p, then the trace is p(q2 + q− 2k) + p2 + 1, which is one more than
a multiple of p, and so it cannot be 0.

If q is not a square number, then
√
q is irrational and so if q2 + q − 2k 6= 0 then the trace of A

must be irrational also. However, the entries of A are all 0 or 1, so its trace is an integer. Hence
q2 + q − 2k = 0 and the trace is q + 1.

In either case, the trace is not 0, so the polarity must have an absolute point. �
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