It might be because of the name but many graduate students find it difficult to understand $\textsf{NP}$ problems. So, I thought of explaining them in an easy way. (When explanation becomes simple, some points may be lost. So, please do refer standard text books for more information)

$\textsf{P}$ Problems

As the name says these problems can be solved in polynomial time, i.e.; $O(n)$, $O(n^2)$ or $O(n^k)$, where $k$ is a constant.

$\textsf{NP}$ Problems

Some think $\text{NP}$ as Non-Polynomial. But actually it is Non-deterministic Polynomial time. i.e.; “yes/no” instances of these problems can be solved in polynomial time by a non-deterministic Turing machine and hence can take up to exponential time (some problems can be solved in sub-exponential but super polynomial time) by a deterministic Turing machine. In other words these problems can be verified (if a solution is given, say if it is correct or wrong) in polynomial time by a deterministic Turing machine (or equivalently our computer). Examples include all $\textsf{P}$ problems. One example of a problem not in $\text{P}$ but in $\text{NP}$ is Integer Factorization.

$\textsf{NP}$ Complete Problems$(\textsf{NPC})$

Over the years many problems in $\textsf{NP}$ have been proved to be in $\textsf{P}$ (like Primality Testing). Still, there are many problems in $\textsf{NP}$ not proved to be in $\textsf{P}$. i.e.; the question still remains whether $\textsf{P} = \textsf{NP}$ (i.e.; whether all $\textsf{NP}$ problems are actually $\textsf{P}$ problems).

$\textsf{NP}$ Complete Problems helps in solving the above question. They are a subset of $\textsf{NP}$ problems with the property that all other $\textsf{NP}$ problems can be reduced to any of them in polynomial time. So, they are the hardest problems in $\textsf{NP}$, in terms of running time. If it can be showed that any $\textsf{NPC}$ Problem is in $\textsf{P}$, then all problems in $\textsf{NP}$ will be in $\textsf{P}$ (because of $\textsf{NPC}$ definition), and hence $\textsf{P} =\textsf{NP} = \textsf{NPC}$.

All $\textsf{NPC}$ problems are in $\textsf{NP}$ (again, due to $\textsf{NPC}$ definition). Examples of $NPC$ problems

$\textsf{NP}$ Hard Problems $(\textsf{NPH})$

These problems need not have any bound on their running time. If any $\textsf{NPC}$ Problem is polynomial time reducible to a problem $X$, that problem $X$ belongs to $\textsf{NP-Hard}$ class. Hence, all $\textsf{NP-Complete}$ problems are also $\textsf{NPH}$. In other words if a $\textsf{NPH}$ problem is non-deterministic polynomial time solvable, it is a $\textsf{NPC}$ problem. Example of a $\textsf{NPH}$ problem that is not $\textsf{NPC}$ is Halting Problem (halting problem is undecidable and all undecidable problem is guaranteed not to be in $\textsf{NP}$ and hence not $\textsf{NPC}$ also).

From the diagram, it is clear that $\textsf{NPC}$ problems are the hardest problems in $\textsf{NP}$ while being the simplest ones in $\textsf{NPH}$. i.e.; $\textsf{NP} ∩ \textsf{NPH} = \textsf{NPC}$

Note

Given a general problem, we can say it is in $\textsf{NPC}$, if and only if we can reduce it to some $\textsf{NP}$ problem (which shows it is in $\textsf{NP}$) and also some $\textsf{NPC}$ problem can be reduced to it (which shows all $\textsf{NP}$ problems can be reduced to this problem).

Also, if a $\textsf{NPH}$ problem is in $\textsf{NP}$, then it is $\textsf{NPC}$

Some Reduction Inferences

arjun

Share
Published by
arjun

Recent Posts

GATE CSE 2022 Admissions, Results and Placement Responses

This page shows all details regarding GATE CSE 2022 Admissions including results, admission offers and…

2 years ago

GATE CSE 2021 Admission Responses

Source Add your Response Rank Predictor for GATE CSE 2021 Result Responses: GATE CSE 2021…

3 years ago

GATE CSE Books – More Options

Best Books for GATE CSE with Relevant Chapters to Read  Heads Up! These GATE CSE…

3 years ago

ISI PCB Previous Year Papers with Solution

Indian Statistical Institute(ISI) offers M Tech in Computer Science with the Admission Test Codes MMA/PCA…

3 years ago

ISI JRF Previous Year Papers with Solution

Indian Statistical Institute(ISI) offers Junior Research Fellowships (JRF) in Computer Science, Statistics, Mathematics, Quantitative Economics,…

3 years ago

ISI DCG Previous Year Papers with Solution

 Indian Statistical Institute(ISI) conduct the admission test for Postgraduate Diploma in Computer Applications(PGDCA) with the…

3 years ago